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Abstract

In the context of the Prandtl-Tomlinson model of atomic friction, we
propose a novel semi-quantitative method to predict kinetic frictional
properties based on equilibrium averages. We identify the condition for a
stick-slip regime with a sufficiently sharp change in the equilibrium free
energy as the Prandtl-Tomlinson slider crosses a maximum of the periodic
potential, thereby switching from one attraction basin to the next. We
apply this method to both the classical and quantum-mechanical model
to quantify and compare thermal and tunneling effects on kinetic friction.
We find that quantum mechanics affects the sharpness of the free energy
exponentially in the opposite of the inverse of the natural parameter for
quantumness, in sharp contrast with thermal effects, that decrease the
same sharpness proportionally to the inverse temperature.
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Chapter 1

Introduction

Which criteria designate a physical phenomenon as worthy of scientific in-
quiry? In the rest of this introduction we will propose two criteria, and argue
that the study of frictional phenomena and in particular nanofriction, the topic
of this thesis, satisfies both.

A commonly proposed criterion is, of course, the potential technological
value one expects to extract from a correct/effective solution of the problem
at hand. Evaluating a research topic in this framework amounts to estimating
its technological potential, irrespective of its content. In the current context of
renewed interest in nanotechnology, nanofriction is a very promising research
avenue aimed at understanding the behavior of atomically sized contacts.
An accurate modeling of the mechanical properties of nanoscale systems is
a crucial step towards engineering them. Indeed, nanotribology has been
successfully applied to the study of nanomotors [?, ?], nanoelectromechanical
systems [?], AFM experiments [?, ?] and contacts between 2D materials [?, ?, ?,
?, ?, ?, ?, ?].

Although scientists are often driven by their intuition about the possible
applications of their research, we would argue that scientific inquiry cannot
simply be driven by the maximization of likely technological impact. Number
theory is a prime example of a case in which such a prediction of technological
significance would have been impossible: if mathematical research avenues
were ranked based on this criterion alone, the foundation of modern cryptog-
raphy would not have been developed. Indeed, scientists are often motivated
by a deep and possibly inexplicable longing for beauty. In the scientific setting
beauty is sometimes synonymous with synthesis: a beautiful model is one that
is able to capture the essence of one or more phenomena, managing to reduce
their complexity and capture their intimate essence as much as possible. The
research carried out by L. Landau [?] is ripe with models with these charac-
teristics, e.g. his work on second-order phase transitions and his introduction
of quasiparticles to describe the excitations of many-body systems. The ef-
fectiveness of such simple models is in their ability to communicate the key
physical characteristics of the phenomena at hand and to predict their broader
consequences quantitatively. The value of such a clear intuition of the physical
content of any phenomenon vastly exceeds that of any specific technological
invention, because it is required before any invention can be attempted.

Even though we are focusing on the aesthetic criteria related to physical
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4 Introduction

theories and models, the beauty of a model cannot be evaluated irrespective
of the physical phenomenon it purports to explain. Beautiful models are such
because they efficiently encode physical intuition about interesting phenom-
ena, i.e. those that are either very common in nature or especially surprising
to the observer, requiring them to change their perspective on the physical
world. Sliding friction, in particular, is extremely common in every day life
and especially surprising when it comes to its realizations at the micro and
nanoscales [?]. In this context the frictional properties depend strongly on the
atomic configuration and commensurability of the interfaces. The same inter-
face may exhibit radically different properties depending on the orientation
[?], sliding direction [?], speed, and applied load [?].

A promising horizon for current research regards the qualitative and quan-
titative study of new frictional phenomena induced by quantum effects. Al-
though the recent introduction of cold ion traps appears to be a promising
field to experimentally probe nanofriction in the quantum regime [?], few
numerical studies have been conducted [?, ?, ?] due to the lack of effective
computational tools to study quantum dynamics. In this work we propose a
new approach based on equilibrium thermodynamics, which allows us to cir-
cumvent the generally expensive full dynamical description of kinetic friction
in the quantum regime.

In this thesis we study an insightful 1D model proposed nearly a century
ago by Prandtl [?] and still frequently used today to understand several key
features of atomic friction [?, ?, ?, ?, ?]: the so-called Prandtl-Tomlinson (PT)
model. This model features a particle interacting with a periodic potential
while it is dragged forward through a harmonic spring whose other end (the
"slider") advances at constant velocity, see Fig. ??.

Figure 1.1: Cartoon of the PT model. The PT
slider is depicted as a square box pulling the PT
particle at constant velocity. Credits: Ref. [?].

As detailed in Chap. ??, the beauty of this model resides in its ability to
encode important physical insights about the mechanism for stick-slip motion,
in few basic mechanical parameters. Stick-slip dynamics, which has broad
macroscale evidence e.g. in squeaking breaks and hinges, is a key mechanism
accounting for the main component of friction in solid/solid contacts, even
at the nanoscale. When stick-slip arises, friction exhibits its full non-linear
nature, witnessed by the logarithmic dependence of the average friction force
on the sliding velocity [?]. After developing our intuition about thermal and
quantum effects on stick-slip, we will identify a necessary condition for stick-
slip based uniquely on equilibrium properties of the model.

The ability to infer properties about kinetic friction from equilibrium quan-
tities is the key idea we propose to carry our classical intuition about stick-slip
motion over to the quantum mechanical setting, where fully dynamical simu-
lations are often impractical. In Chap. ?? we will then apply our equilibrium
criterion to the quantum PT model and use it to quantify the effect of quantum
tunneling on kinetic friction. We find that the effect of quantumness is quite
distinct and generally more dramatic than the one of thermal fluctuations.

Chapter ?? draws the conclusions of this research, and outlines its natural
extensions, aiming to a better modeling of energy dissipation through the
excitation of phonons, rather than via a standard Langevin thermostat.

Appendix ?? reports a low-temperature asymptotic expansion of the clas-
sical PT model’s partition function referenced in Chap. ??, Appendix ?? tests
the Monte Carlo algorithms described in Chap. ??, Appendix ?? introduces the
shooting method used in Chap. ?? to diagonalize the quantum Hamiltonian of
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the PT model. Finally, Appendix ?? lays the foundations for the application of
the algorithms described in Chap. ?? to the phonon-coupled PT model.

All of the programs used to generate the figures are available[?] under the
terms of the GNU General Public License Version 3, or any later version.

https://www.gnu.org/licenses/gpl-3.0.en.html




Chapter 2

The Prandtl-Tomlinson Model

The simplest and therefore most studied model for sliding friction is the one
proposed by L. Prandtl [?] in 1928 and historically attributed to both L. Prandtl
and G.A. Tomlinson. The qualitative and quantitative insight given by this
model still informs the current understanding of dynamical friction nearly a
century later. After a brief description of the classical model we introduce and
study its quantum mechanical version. In the present Chapter we introduce
the classical PT model and review its main features, focusing on the crossover
between stick-slip dynamics and smooth-sliding dynamics. We then proceed
to formulate a method to predict which of the two can occur, without actually
carrying out an explicit dynamical study, but rather focusing on equilibrium.
We will identify a parameter, named 𝜒 and defined below, which needs to be
large for stick-slip dynamics to occur at all. Next, by comparing dynamical
simulations with equilibrium values of 𝜒, we will nail down the precise range
for this parameter.

2.1 The classical PT model

Interest in the classical Prandtl-Tomlinson [?] model stems from its ability to
describe and characterize stick slip motion as the main contributor to sliding
friction. The model is one dimensional and it consists of a particle of mass
𝑀 at position 𝑋, interacting with a static periodic potential and a harmonic
spring dragged with constant velocity 𝑣̃. The particle is furthermore coupled
to an environment acting as an energy sink and modeled as a viscous force
−𝑀Γ ¤𝑋. The equation of motion reads 1 :1We may also express the periodic

potential in the following way:

𝑈0
2 cos

(
2𝜋
𝑎
𝑋

)
where we introduced the barrier height
𝑈0 = 2𝑉0. This is a matter of taste and in-
deed certain articles adopt this alternative
definition. Care must be taken to keep
track of the different factors of 2 through-
out.

𝑀 ¥𝑋 = −𝑀Γ ¤𝑋 − 𝜕

𝜕𝑋

[
𝐾

2 (𝑋 − 𝑋̃)
2 +𝑉0 cos

(
2𝜋
𝑎
𝑋

)]
, 𝑋̃ = 𝑣̃𝑡. (2.1)

In the following we will refer to 𝑋̃ as the position of the slider and to the term
in brackets as the classical PT potential 𝑉PT(𝑋; 𝑋̃). The main parameter that
influences the dynamics of the system is the ratio between the curvature of
the sinusoidal potential at its minimum 4𝜋2𝑉0/𝑎2 and the harmonic spring
constant 𝐾:

𝜂 =
4𝜋2𝑉0
𝐾𝑎2 . (2.2)
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Figure 2.1: Prototypical examples of
time evolution 𝑋(𝑡) at zero tempera-
ture 𝑇 = 0 K. Panel (a): an example
of smooth-sliding dynamics (𝜂 = 0.9);
panel (b): an example stick-slip dy-
namics (𝜂 = 8). See Section ?? below
for details on the algorithm employed,
and Fig. ?? for the whole set of param-
eters adopted.

When 𝜂 < 1 the sinusoidal potential acts as a relatively weak perturbation to

Slip

t = 0

t = tslip

Figure 2.2: Cartoon of the "slip" event. The
solid and dashed curves represent the Prandtl-
Tomlinson potential energy surface𝑉PT(𝑋; 𝑋̃ =

𝑣̃𝑡)

the spring energy: as a result the particle is dragged along with the spring, in a
regime usually termed smooth sliding, Fig. ??a. On the other hand, when 𝜂 > 1
the system can experience stick-slip motion, see Fig ??b, which is characterized
by two phases: an energy accumulation process in which the system is stuck
near a local minimum, the “stick" phase, followed by a sudden release of the
accumulated energy with a leap into a successive energy minimum, the “slip"
phase (see Fig. ?? for a pictorial representation).

2.2 Langevin Dynamics

In this section, after establishing an intuitive picture of stick-slip motion as
caused by the formation of transient energy barriers that weaken and eventu-
ally vanish, we will study the dependence of stick-slip on simulation parame-
ters Γ, 𝑣̃, 𝑇 and 𝜂.

Before any discussion of stick-slip, let us introduce appropriate dimen-
sionless variables in the equation of motion Eq. (??). The periodicity of the
potential suggests to use the lattice spacing 𝑎 as unit of length and

𝜈−1
𝑎 = 𝑎/𝑣̃ (2.3)

as unit of time (𝜈𝑎 = 𝑣̃/𝑎 is usually called washboard frequency ). We furthermore
introduce the critical damping:

Γ𝑐 = 2
√
𝐾

𝑀
, (2.4)

which separates the overdamped regime Γ > Γ𝑐 from the underdamped one
Γ < Γ𝑐 . This definition focuses on the damping properties of the driving spring,
which is the slowest mode in the model’s interesting regime 𝜂 > 1 compatible
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Dimensionless quantity Definition

PT ratio 𝜂 𝜂 =
4𝜋2𝑉0

𝐾𝑎2

damping ratio 𝛾 𝛾 =
Γ

Γ𝑐
=

Γ

2𝜈𝐾
slider speed 𝑠 𝑠 =

𝜈𝑎

𝜈𝐾

time 𝜏 𝜏 = 𝜈𝑎𝑡 =
𝑣̃𝑡

𝑎

slider’s position 𝑥̃ 𝑥̃ =
𝑋̃

𝑎
=
𝑣̃𝑡

𝑎
= 𝜏

PT particle’s position 𝑥 𝑥 =
𝑋

𝑎

Table 2.1: Dimensionless model parameters, plus the dimensionless time 𝜏 and position 𝑥. Here 𝜈𝐾 =√
𝐾/𝑀/(2𝜋) is the oscillator frequency associated to the driving spring, and 𝜈𝑎 = 𝑣̃/𝑎 is the washboard

frequency associated to the advancing slider.

with stick-slip. A stick-slip regime differentiates better from smooth sliding in
the underdamped dynamics where the slip phase is not significantly slowed
down by viscous friction. In practice therefore we will focus on Γ < Γ𝑐 . We
introduce a dimensionless damping ratio

𝛾 =
Γ

Γ𝑐
< 1 . (2.5)

The third and last parameter relates the speed of the slider to the typical
oscillation frequency in the minimum of the driving spring’s potential well:

𝑠 =
𝜈𝑎
𝜈𝐾

=
2𝜋

𝑎
√
𝐾/𝑀

𝑣̃, (2.6)

𝜈𝐾 =
1

2𝜋

√
𝐾

𝑀
. (2.7)

When all other parameters are fixed, changing 𝑠 amounts to modifying the PT
model driving speed 𝑣̃.

Introducing the dimensionless position 𝑥 = 𝑋/𝑎 and dimensionless time
𝜏 = 𝜈𝑎𝑡, the equation of motion reads:

d2𝑥

d𝜏2 = −4𝜋
𝛾

𝑠

d𝑥
d𝜏 +

4𝜋2

𝑠2

[
𝜏 − 𝑥 + 𝜂

2𝜋 sin(2𝜋𝑥)
]
. (2.8)

Table ?? summarizes the dimensionless quantities of the model.



10 The Prandtl-Tomlinson Model

 0

 1

 2

 3

 4
(a) η = 0.9

V
P

T
(x

) 
/ 

K
a2

0

1

2

3

4

-3 -2 -1 0 1 2 3

(b) η = 8

V
P

T
(x

) 
/ 

K
a2

X / a

Figure 2.3: Potential energy for the
PT model 𝑉PT(𝑋; 𝑋̃ = 0) for (a) 𝜂 =

0.9 < 1 and (b) 𝜂 = 8 > 1. The possi-
bility of stick-slip in the 𝜂 > 1 region
is related to the competition between
multiple potential-energy minima.

Δ
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Figure 2.4: Cartoon of the energy barrier Δ

that causes the stick phase.

Stick-slip can only occur for 𝜂 > 1, which corresponds to the formation of
multiple coexisting potential-energy minima, see Fig. ??. Indeed, during the
dynamics the presence of an energy barrier Δ(𝑡) between the occupied local
minimum and the global one causes the particle to “stick" in the unfavorable
position, while the vanishing of such barrier at a specified time 𝑡slip,Δ(𝑡slip) = 0,
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Figure 2.5: Panel (a) typical example
of stick-slip time evolution 𝑋(𝑡), Panel
(b) energy barrier Δ(𝑡), see Fig. ??.
Clearly, the slip event coincides with
the vanishing of Δ(𝑡).
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(b) potential energy 𝑉PT(𝑋(𝑡), 𝑣̃𝑡).
The stick phase corresponds to an en-
ergy accumulation process that culmi-
nates in sudden dissipation during the
slip.

allows the particle to “slip" into a more favorable configuration, see Figs. ??
and ??. The energy accumulated during the stick phase is transferred to the
environment during the slip, thus accounting for the highly dissipative nature
of stick-slip dynamics.

Qualitative parameter dependence of stick-slip

The existence of stick-slip motion depends non-trivially on the parameters of
the model and a quantitative description can only be achieved via computer
simulation, nonetheless we attempt to give a qualitative description that will
guide our simulations.

For simplicity, let us first focus on the 𝑇 = 0 case, where the dependence
on the energy is simple: stick-slip can only happen for 𝜂 > 1. Suppose we
fix 𝜂 > 1, our pictorial understanding of stick-slip is based on the occasional
inability of the PT particle to overcome potential energy barriers. This picture
suggests that for a sufficiently fast sliding velocity, the particle will have no
time to stick into the minimum, i.e. for

1
2𝑀𝑣̃2 ≫ 2𝑉0 , (2.9)

stick-slip will be suppressed by inertia. This suppression of stick-slip occurs

Inertia

Figure 2.7: Cartoon of the way by which iner-
tia prevents the stick phase, for 𝑣̃ > 𝑣𝑢𝑐 (𝑇, 𝜂, 𝛾).

continuously, as analyzed in detail in Ref. [?], across an upper crossover slider
velocity 𝑣𝑢𝑐 (𝑇 = 0, 𝜂, 𝛾) above which the system will experience smooth sliding,
see Fig. ??. Similarly we we expect temperature to preempt the energy barriers
by thermally hopping over them. As a result an increase in temperature tends
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to favor smooth sliding against stick-slip, thus reducing the upper crossover
velocity

d𝑣𝑢𝑐 (𝑇, 𝜂, 𝛾)
d𝑇 < 0. (2.10)

On the other hand, for any nonzero temperature, diffusion will let the sys-
tem overcome any barrier, provided that we allow it long enough. This sug-

Hopping

Figure 2.8: Cartoon of a thermally activated
barrier hopping event.

gests that if the slider advances sufficiently slowly the particle has a chance to
thermally hop back-and-forth over the barrier. This low-speed diffusive regime
terminates the stick-slip phase at a lower critical slider velocity 𝑣 𝑙𝑐(𝑇, 𝜂, 𝛾) be-
low which stick-slip cannot occur. As temperature increases [?] the time 𝜏𝑇
required to hop over a barrier of size Δ, see Fig. ??, decreases exponentially:

𝜏𝑇 ∝ 𝑓 −1 exp
(

Δ

𝑘B𝑇

)
, (2.11)

with 𝑓 the attempt frequency. If we take the distance between the minima
separated by the barrier to be 𝑑, see Fig. ??, and the speed of the particle to
be 𝑣, then the time needed to overcome the barrier “dynamically" 𝜏𝑣 is of the
order of:

𝜏𝑣 ∝
𝑑

𝑣
. (2.12)

In the case of the PT system we can take 𝑑 ∼ 𝑎,Δ ∼ 2𝑉0 and expect the crossover
velocity 𝑣 𝑙𝑐 to correspond to the matching between 𝜏𝑇 and 𝜏𝑣 :

𝑣 𝑙𝑐(𝑇) ∝ 𝑎 𝑓 exp
(
− 2𝑉0
𝑘B𝑇

)
. (2.13)

So we expect the lower critical velocity to increase with temperature:

d𝑣 𝑙𝑐(𝑇, 𝜂, 𝛾)
d𝑇 > 0, (2.14)

and most importantly we know that this effect does not happen at 𝑇 = 0, so
that:

lim
𝑇→0

𝑣 𝑙𝑐(𝑇, 𝜂, 𝛾) = 0. (2.15)
T0

Tc

 0 vc
u (T=0, η, γ)

T
 [

a.
u

.]

v~ [a.u]

vl
c (Tc) = vu

c (Tc)

vl
c (T0, η, γ)

vu
c (T0, η, γ)

Stick-Slip

Thermolubricity

Smooth
Sliding

Figure 2.9: Cartoon of the expected
boundary separation between stick-slip and
thermolubric/smooth-sliding phases.

The combination of Eqs. (??),(??) suggests that there exists a sufficiently
high temperature 𝑇𝑐(𝜂, 𝛾) such that:

𝑣 𝑙𝑐(𝑇𝑐(𝜂, 𝛾), 𝜂, 𝛾) = 𝑣𝑢𝑐 (𝑇𝑐(𝜂, 𝛾), 𝜂, 𝛾), (2.16)

and for any temperature 𝑇 > 𝑇𝑐 no stick-slip can occur, see Fig. ??. In this
regime, usually termed thermolubricity, thermal fluctuations are so large that
both forward and backward barrier hopping can occur and stick-slip cannot
be meaningfully defined, see Fig. ??.

Figure 2.10: Cartoon of the diffusive motion
typical of thermolubricity.

If we now consider how temperature will affect the energetics of the system,
as we remarked above we expect the primary thermal effect to be a reduction
of effective barriers, so that we expect the necessary condition 𝜂 > 1 to be
weakened to 𝜂 > 𝜂𝑐(𝑇) ≥ 1. After guessing the expected shape of the "phase
diagram" of this system as a function of 𝜂, 𝑇 and 𝑣̃, let us report our results
obtained via MD simulations.
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How to recognize Stick-Slip automatically

In this section we will discuss the algorithms we implemented[?] in order to
obtain a diagram similar to Fig. ?? via MD simulations.

First of all, we need to simulate the dynamics of the PT system at 𝑇 > 0.
We do so by integrating the Langevin equation:

d𝑋(𝑡)
d𝑡 = 𝑉(𝑡),
𝑀

d𝑉(𝑡)
d𝑡 = − 𝜕𝑉PT(𝑋,𝑡)

𝜕𝑋 −𝑀Γ𝑉(𝑡) +𝑊(𝑡)
𝑋(0) = 𝑋0 ,

𝑉(0) = 𝑉0 ,

(2.17)

where 𝑊(𝑡) is a Gaussian noise term representing the thermal random force
applied by the thermostat, and is chosen so that it satisfies the fluctuation-
dissipation theorem:

⟨𝑊(𝑡)⟩ = 0,
⟨𝑊(𝑡)𝑊(𝑡′)⟩ = 2𝑀Γ𝑘B𝑇𝛿(𝑡 − 𝑡′).

(2.18)

Following a procedure similar to that used for Eq. (??), we proceed then to
express Eq. (??) in terms of the previously defined dimensionless constants 𝜂,
𝛾, 𝑠 and dynamical variables 𝑥, 𝜏 etc. (see Table ??):

d𝑥(𝜏)
d𝜏 = 𝑣(𝜏),

d𝑣(𝜏)
d𝜏 =

4𝜋2

𝑠2

[
𝜏 − 𝑥 + 𝜂

2𝜋 sin(2𝜋𝑥)
]
− 4𝜋𝛾

𝑠
𝑣(𝜏) + 𝑤(𝜏),

𝑥(0) = 𝑥0 ,

𝑣(0) = 𝑣0 ,

(2.19)

with 𝑤(𝑡) = 𝑊(𝑡)/(𝑀𝑎2𝜈2
𝑎). In order integrate this equation we implement[?]

the simple Grønbech-Jensen-Farago [?] algorithm: we fix an integration timestep
d𝜏 and approximate the discretized positions 𝑥𝑛 ≃ 𝑥(𝑛d𝜏), 𝑛 ∈ ℕ, and ve-
locities 𝑣𝑛 ≃ 𝑣(𝑛d𝜏) by evolving the initial conditions according to the GJF
equations:

𝑥𝑛+1 = 𝑥𝑛 + 𝑏d𝜏𝑤𝑛 +
2𝜋2𝑏d𝜏2

𝑠2 𝑓𝑛 +
2𝜋2𝑏d𝜏
𝑠2 𝑤𝑛+1 ,

𝑣𝑛+1 = 𝑣𝑛 +
2𝜋2d𝜏
𝑠2 ( 𝑓𝑛 + 𝑓𝑛+1) −

4𝜋𝛾
𝑠
(𝑥𝑛+1 − 𝑥𝑛) +

4𝜋2

𝑠2 𝑤𝑛+1 ,

(2.20)

where 𝑤𝑛 is a random number sampled from a Gaussian distribution:

⟨𝑤𝑛⟩ = 0,

⟨𝑤𝑛𝑤𝑙⟩ =
𝛾

𝜋3 𝑠𝜂
𝑘B𝑇

2𝑉0
d𝜏𝛿𝑛,𝑙 ,

(2.21)

the discretized dimensionless forces 𝑓𝑛 are:

𝑓𝑛 = 𝑛d𝜏 − 𝑥𝑛 +
𝜂

2𝜋 sin(2𝜋𝑥𝑛) (2.22)
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Figure 2.11: Examples of time evo-
lution 𝑥(𝜏) in the stick-slip regime.
The parameters are taken from Ref. [?]:
𝑉0 = 0.22 eV, 𝑎 = 0.315 nm, 𝐾 =

1.71 N/m, 𝑀 = 2.84 × 10−9 kg, 𝑇 =

300 K, Γ = 1.169 × 104 s−1. In this
example the dynamics switches from
multiple-slip at 𝑇 = 0 to single-slip at
𝑘B𝑇 = 300 K, i.e. 𝑘B𝑇/(2𝑉0) = 0.058.

and

𝑏 =
1

1 + 2𝜋𝛾d𝜏
𝑠

. (2.23)

To show the effect of temperature on a stick-slip, in Fig. ?? we display a partic-
ularly stark example of a temperature-induced transition from double-slip to
single-slip.

In order to obtain a diagram similar to Fig. ??, we need to come up with
an algorithm to reliably post-process a trajectory and detect the presence or
absence of stick-slip events. We propose the following approach:

• Integrate the Langevin equation Eq. (??) to compute the trajectory of the
PT particle 𝑥(𝜏),

• Discard an initial transient 𝜏transient,

• Fix a time interval Δ𝜏 larger than the duration of a slip and shorter than
the length of a period, i.e. 1 in our units, and compute the jump:

Δ𝑥(𝜏,Δ𝜏) = 𝑥(𝜏) − 𝑥(𝜏 − Δ𝜏), (2.24)
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Figure 2.12: Panel (a): Same as
Fig. ??. Panel (b): Jump Δ𝑋(𝑡 ,Δ𝑡 =

0.05𝜈−1
𝑎 ), Eq. (??).

• When at any time the jump Δ𝑥(𝜏,Δ𝜏) is sufficiently wide, we have a clear
indication of a transition between two wells, see Fig.??; instead, a large
negative Δ𝑥(𝜏,Δ𝜏) signals a backward transition. In particular, jumps
Δ𝑥(𝜏,Δ𝜏) are considered to be sufficiently wide if they cross a threshold:
|Δ𝑥(𝜏,Δ𝜏)| > 𝒯 , which we take to be 𝒯 > 0.5 to distinguish forward and
backward jumps from thermal noise.

Unfortunately, neither the transition to smooth sliding in the high velocity
range, 𝑣 ≃ 𝑣𝑢𝑐 , nor the transition to the thermolubric regime in the high tem-
perature range, 𝑇 ≃ 𝑇𝑐 , are sharp. In the regions of parameter space close to
the transition it is particularly hard to meaningfully classify trajectories. In or-
der to work around this problem we classify trajectories into three categories:
stick-slip, not stick-slip and crossover, see Fig. ?? for examples.

Before presenting our results we discuss the criteria we used to classify
the trajectories. Let us denote by 𝑁 the number of time steps in the trajectory
and by 𝑁<0 and 𝑁>0 the number of points such that Δ𝑥(𝜏,Δ𝜏) falls below −𝒯
or above 𝒯 , respectively. Similarly we will denote by 𝜏>0 and 𝜏<0 the sets of
time steps 𝜏 such that Δ𝑥(𝜏,Δ𝜏) > 𝒯 and Δ𝑥(𝜏,Δ𝜏) < −𝒯 , respectively. We
identify 4 criteria that can be tested to reasonably classify a trajectory as not
stick-slip:

• |Δ𝑥(𝜏,Δ𝜏)| < 𝒯 : there are no jumps between potential energy minima,

• For a givenΔ𝜏 any slip event shorter thanΔ𝜏will correspond to a window
of ⌊Δ𝜏/d𝜏⌋ values such that Δ𝑥(𝜏,Δ𝜏) > 𝒯 . So if:

𝑁>0
⌊Δ𝜏/d𝜏⌋ ≪ 𝑁d𝜏 (2.25)

we consider the recognized slip events as accidental2. This may happen2Note that in our units 𝑣̃ = 1, so
𝑁d𝜏 corresponds to the number of wave-
lengths traveled by the slider.

when Δ𝑥(𝜏,Δ𝜏) ≲ 𝒯 and it accidentally crosses the threshold 𝒯 .

• If the standard deviation 𝜎(Δ𝑥) is above the threshold: 𝜎(Δ𝑥) > 𝒯 , we
consider the trajectory to be in the thermolubric regime, like Fig. ??c.
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Figure 2.13: Examples of MD trajec-
tories for the PT model, at 𝜂 = 12,
𝛾 = 0.25, and (a): 𝑠 = 10−5, 𝑇 =

𝑘B𝑇/(2𝑉0) = 5 × 10−4; (b): 𝑠 = 10−5,
𝑇 = 10−1; (c): 𝑠 = 10−5,𝑇 = 1; (d): 𝑠 =
2, 𝑇 = 2. Note how both trajectories in
panel (b) and panel (d) show features
of stick-slip motion and thermolubric-
like backward jumps. Assigning a la-
bel to these trajectories is practically
arbitrary.
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Figure 2.14: Diagram of the stick-
slip "phase" as a function of speed 𝑠
and temperature 𝑘B𝑇/(2𝑉0). Integra-
tion timesteps range from d𝜏 = 10−8

for 𝑠 ≲ 10−5 to d𝜏 = 10−6 for 𝑠 ≳ 10−4,
while Δ𝜏 ranges from Δ𝜏 = 0.01 to
Δ𝜏 = 1 and thresholds 𝒯 range from
𝒯 = 0.5 to 𝒯 = 2.
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• Similarly, if the root mean displacement of the negative jumps crosses
the threshold:

RMSD(Δ𝑥(𝜏<0 ,Δ𝜏)) > 𝒯 , (2.26)
we consider the trajectory to be in the thermolubric regime.

If none of the above criteria applies to the trajectory, we classify it as undecided
if one of the following is true:

• 𝑁<0 is comparable to 𝑁>0:

𝑁<0 > 𝑝1𝑁>0 , (2.27)

for a given fraction 𝑝 ≈ 1, which we set to be 𝑝1 = 0.8. This criterion
should identify situations similar to Fig. ??b.

• If the number of positive peaks is greater than the number of periods:

𝑁>0
⌊Δ𝜏/d𝜏⌋ > 𝑝2𝑁d𝜏, (2.28)

for some 𝑝2 > 1, and the number of negative peaks is comparable to the
number of positive ones:

𝑁<0
𝑁>0

> 𝑝3 , (2.29)

for some 𝑝3 ≲ 1. We take 𝑝2 = 1.5 and 𝑝3 = 0.8 in our simulations.

Our units are chosen to ensure that 𝑣̃ = 1, so MD trajectories will be
comparable across a wide range of parameter values 𝑠, 𝑇, 𝜂, 𝛾. Simulation
results are shown in Fig. ??, which displays a "phase diagram" similar to the
cartoon in Fig. ??. For both 𝜂 = 12, Fig. ??a, and 𝜂 = 4, Fig. ??b, stick-slip seems
to disappear for any temperature 𝑘B𝑇/(2𝑉0) > 1.

2.3 Equilibrium signature of stick-slip dynamics

At zero temperature, the “stick" phase is the result of the presence of multiple
competing energy minima at any fixed time, with the particle remaining stuck
in one of them. The “slip" takes place when the particle overcomes the barrier
and hops into an energetically more favorable minimum nearby. The effect
of temperature is then to preempt the “stick” by thermally hopping over the
barrier. The probability of hopping raises as the slider velocity decreases. In
the adiabatic limit of ultralow-velocity 𝑣̃ → 0, stick-slip is replaced by ran-
dom diffusive back-and-forward jumps across the barrier. In this limit the
slider’s position is essentially constant, while the particle explores configu-
rations weighted according to the quasi-equilibrium Boltzmann distribution
exp

(
−𝛽𝐻(𝑃, 𝑋, 𝑋̃)

)
. From the point of view of an external experimenter mov-

ing the slider is equivalent to exploring the free-energy landscape:

𝐹(𝑋̃) = −𝑘B𝑇 log
(
𝑍(𝑋̃)

)
,

𝑍(𝑋̃) =
∫

d𝑋d𝑃
2𝜋ℏ e−𝛽

(
𝑃2
2𝑀 +𝑉PT(𝑋,𝑋̃)

)
=

∫
d𝑋
Λ

exp
(
−𝛽𝑉PT(𝑋, 𝑋̃)

)
,

(2.30)
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where Λ is the thermal length defined by:

𝑘B𝑇

4𝜋 =
ℏ2

2𝑀Λ2 =⇒ Λ =

√
ℏ2𝛽2𝜋
𝑀

. (2.31)

In concrete, to keep the slider’s velocity constant, the instantaneous external
force has to be equal and opposite to the average force

ℱ =

〈
−𝜕𝑉PT(𝑋, 𝑋̃)

𝜕𝑋̃

〉
= −𝜕𝐹(𝑋̃)

𝜕𝑋̃
(2.32)

generated by the Prandtl-Tomlinson particle. For any fixed slider position
𝑋̃, the exponential decay of the Boltzmann weight exp

(
−𝛽𝑉PT(𝑋, 𝑋̃)

)
implies

that any thermal average will be determined by the configurations within a
few multiples of 𝑘B𝑇 from the global potential energy minima. The presence
of energy barriers between competing potential energy minima, a necessary
condition for stick-slip, will then reflect in the average force as follows. Pro-
vided that the temperature is low enough to neglect the weight of configu-
rations with energy close to the barrier height, i.e. 𝑘B𝑇 ≪ 2𝑉0, the set of
configurations that contribute dominantly to the thermal average in Eq. (??)
ℳ(𝑋̃) = {𝑌 | 𝑉PT(𝑌, 𝑋̃) ≤ min𝑋 𝑉PT(𝑋, 𝑋̃) + 𝑘B𝑇}, highlighted by blue boxes
in Fig. ??, will depend strongly on 𝑋̃. The average force ℱ will then be subject
to a sharp change as 𝑋̃ crosses a maximum of the sinusoidal potential, e.g. the
one at 𝑋̃ = 0.
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X

Figure 2.15: A cartoon representing the set of
dominant pointsℳ(𝑋̃) for a low temperature,
𝑘B𝑇/(2𝑉0) ≪ 1.

We propose to estimate the influence of temperature by computing the
derivative of the average force at a switching point, e.g. 𝑋̃ = 0:

𝜕ℱ /𝜕𝑋̃
����
𝑋̃=0

= −𝜕2𝐹/𝜕𝑋̃2
����
𝑋̃=0

=: 𝜒. (2.33)

For values of 𝜂 large enough to sustain multiple minima and the possibility
of stick-slip dynamics, as 𝑇 decreases we expect this derivative to diverge as
illustrated in Fig. ??.

For convenience we introduce the rescaled 𝑥̃ = 𝑋̃/𝑎. By focusing on the
low-temperature regime, we derive (Appendix ??) an asymptotic expression
for the partition function:

𝑍(𝑥̃)
𝛽𝑉0→∞≃ 2 𝑎

Λ

√
𝜂

𝜂 + 1
e𝛽𝑉0√
2𝜋𝛽𝑉0

exp
(
−2𝜋2𝛽𝑉0

𝜂 + 1 (𝑥̃
2 + 1/4)

)
cosh

(
2𝜋2𝛽𝑉0 𝑥̃

𝜂 + 1

)
. (2.34)

While the exact partition function Eq. (??) is obviously periodic in 𝑋̃ with
period 𝑎, the approximate expression Eq. (??) lacks any periodicity, and only
holds in the range −1/2 ≤ 𝑥̃ ≤ 1/2. The loss of periodicity is a result of the
asymptotic expansion and we refer the curious reader to Appendix ?? for a
detailed account.
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tion of Eq. (??) (dots) are compared to
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We use Eq. (??) to calculate the free energy and its derivatives:

𝐹(𝑥̃) = −1
𝛽

log𝑍(𝑥̃)
𝛽𝑉0→∞≃ −𝑉0 +

2𝜋2𝑉0
𝜂 + 1 (𝑥̃

2 + 1/4) − 1
𝛽

log cosh
(
2𝜋2𝛽𝑉0

𝜂 + 1 𝑥̃

)
𝜕𝐹(𝑥̃)
𝜕𝑥̃

=
4𝜋2𝑉0
𝜂 + 1 𝑥̃ −

2𝜋2𝑉0
𝜂 + 1 tanh

(
2𝜋2𝛽𝑉0

𝜂 + 1 𝑥̃

)
𝜕2𝐹(𝑥̃)
𝜕𝑥̃2 =

4𝜋2𝑉0
𝜂 + 1 − 2𝛽𝑉0

2𝜋2𝑉0
(𝜂 + 1)2 sech2

(
2𝜋2𝛽𝑉0

𝜂 + 1 𝑥̃

)
.

(2.35)
Focusing on the switching point 𝑥̃ = 0, we note that the second derivative
diverges as 𝛽 ∝ 𝑇−1:

−𝜒 =
𝜕2𝐹(𝑥̃)
𝜕𝑥̃2

����
𝑥̃=0

= 2𝑉0

[
2𝜋2

𝜂 + 1 − 2𝑉0𝛽
𝜋2

(𝜂 + 1)2

]
. (2.36)

Recalling Eq. (??), i.e. 2𝑉0/𝐾 = 𝑎2𝜂/(2𝜋2), we can rescale the previous expres-
sion to dimensionless quantities:

𝜒
𝐾

=

���� 𝜂

𝜂 + 1 −
1
2

𝜂

(𝜂 + 1)2 2𝑉0𝛽

���� = ���� 𝜂

𝜂 + 1 −
1

4𝜋2
𝜂2

(𝜂 + 1)2 𝛽𝐾𝑎
2
���� (2.37)

In Fig. ?? we compare the outcome of Eq. (??) with the exact value of this
quantity, obtained by means of the numerical integration of Eq. (??). Fig-
ure ?? reports the same comparison as a function of 𝜂 for a fixed temperature.
Note that the approximate asymptotic expression (??) agrees perfectly with the
numerical result for 𝜂 ≳ 4.

In this section we identified a promising necessary condition for stick-slip
that can be linked to the equilibrium properties of the model. The presence of
energy barriers between local minima, itself a necessary condition of stick-slip,
is a sufficient condition for the sharp changes in the average force described
above. Therefore we expect that there might be a lower bound on the absolute



2.3. Equilibrium signature of stick-slip dynamics 21

value of the derivative of the average force, 𝜒, below which no stick-slip can
occur. A lower bound on 𝜒 then corresponds to an upper bound for 𝑇.

Although the resolution of Fig. ?? is lacking, direct comparison with Fig. ??
seems to indicate that this corresponds with the temperature range where 𝜒
decreases below the critical value 𝜒𝑐 ≃ 𝐾.

Due to time constraints, we settle for this semi-quantitative result. We are
confident that a more thorough analysis of this analogy between 𝜒 and the
stick-slip phase diagram will quantitatively confirm the predictive power of
our approach.





Chapter 3

The Quantum PT Model

Before considering any of the details of a fully quantum mechanical description
of the Prandtl-Tomlinson system, we have to discuss the main features we
expect to be able to study in order to characterize “stick-slip" motion. First of
all, what would constitute stick-slip motion in a quantum mechanical setting?
Suppose we substitute the Prandtl-Tomlinson particle with a wave function,
how can we relate to the classical intuition behind stick-slip as the particle
"being stuck" at a minimum and then suddenly "slipping forward"? In a
strongly quantum regime we expect tunneling to invalidate this intuition:
in such conditions the particle would be delocalized across multiple nearby
minima and the notion of it being "stuck" in any of them is at best ill-defined, if
not completely inapplicable. Similarly, any particle-related observable we may
select to measure in order to establish the presence of stick-slip could be subject
to a very similar critique as its observed average value will be influenced by the
delocalization of the particle and, in this strongly quantum regime, will also
be affected by close by minima. Although no inherently quantum mechanical
quantity can describe stick-slip as we imagine it when we think about the
classical Prandtl-Tomlinson system, we can still look for classical elements we
wish to retain in our quantum mechanical model that would lend themselves
to a similar interpretation. For example, the constant velocity motion of the
slider is to be regarded as a necessarily classical phenomenon we would likely
want to keep in the quantum model we are devising. This constant velocity
motion could be described as an external condition fixed by the experimental
setup, or explained by appealing to the general conceptual problem of the
necessity of classical degrees of freedom (such as external fields) acting on
any quantum mechanical system. Regardless, we can take advantage of this
external parameter to look for observable quantities related to stick-slip motion
that can be directly compared with their analog in the classical PT system.

In our discussion about the classical PT system we realized that a necessary
condition for stick-slip motion is the presence of discontinuities (at 𝑇 = 0) or
sharp changes in the derivative of the free energy as a function of the position
of the slider 𝜕𝐹(𝑋̃)/𝜕𝑋̃ (see Fig. ??). Presuming to be able to describe the
low-velocity motion by studying equilibrium quantities, these sharp changes
in the derivative describe the sharp variation in the force that the external
experimenter has to apply on the slider to keep its velocity fixed when the
“slip" occurs. In the classical model, before slip the experimenter would

23
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need to pull the slider to the right to maintain its speed, while after slip one
must suddenly brake to prevent the particle from pushing the slider forward.
Such an abrupt change in the direction of the external force is precisely the
discontinuity we observed and, most importantly, it does not depend on the
precise mechanism by which “stick" or “slip" happen, but rather on the rapid
change in the state of the particle. If any such a rapid change of state survives
in the quantum mechanical case it could therefore be meaningfully studied
by measuring the presence, or lack of, such discontinuities. Our choice to
focus on equilibrium quantities is useful in preparation for the study of more
complicated many-body models in which the static potential is substituted by
e.g. an harmonic chain; in such a case the quantum dynamics is inaccessible
to computer simulations, while equilibrium properties can be computed by
imaginary-time Path Integral Monte Carlo (PIMC).

At a fixed position of the slider 𝑋̃, the quantum mechanical analog of the
Prandtl-Tomlinson model consists of a 1D system governed by the Hamilto-
nian:

𝐻̂(𝑋̃) = 𝑃̂2

2𝑀 +𝑉0 cos
(
2𝜋
𝑎
𝑋̂

)
+ 𝐾2 (𝑋̂ − 𝑋̃)

2. (3.1)

By introducing the oscillator frequency 𝜔:

𝜔 =

√
𝐾

𝑀
, (3.2)

and the oscillator length 𝑙 defined by:

ℏ2

2𝑀𝑙2
=
𝐾𝑙2

2 =⇒ 𝑙 =

√
ℏ

𝑀𝜔
, (3.3)

we can recast the Hamiltonian Eq. (??) in the following form:

𝐻̂(𝑋̃) = ℏ𝜔
2 𝑝̂2︸︷︷︸
𝑇̂

+ ℏ𝜔
2 (𝑥̂ − 𝑥̃)

2 +𝑉0 cos
(
2𝜋 𝑙
𝑎
𝑥̂

)
︸                                ︷︷                                ︸

𝑉̂(𝑥̂ ,𝑥̃)

. (3.4)

Here we introduced the rescaled dimensionless operators 𝑝̂ = 𝑙𝑃̂/ℏ, 𝑥̂ = 𝑋̂/𝑙
and 𝑥̃ = 𝑋̃/𝑙 as the fixed (dimensionless) slider position. By taking ℏ𝜔 as unit
of energy we can further rewrite Eq. (??) in a completely dimensionless form:

𝔥̂(𝑥̃) := 𝐻̂(𝑋̃)
ℏ𝜔

=
1
2

[
𝑝̂2 + (𝑥̂ − 𝑥̃)2 + 2𝑉0

ℏ𝜔
cos

(
2𝜋 𝑙
𝑎
𝑥̂

)]
.

In this expression, the ratio ℏ𝜔/(𝐾𝑎2) = 𝑙2/𝑎2 measures the “quantumness"
of the system through the ratio of the periodic potential corrugation to the
oscillator quantum, which can alternatively be expressed in terms of the di-
mensionless length ratio 𝑙/𝑎: 2𝑉0/(ℏ𝜔) = 2𝜂(𝐾𝑎2)/(4𝜋2)/(𝐾𝑙2) = 𝜂

2𝜋2 (𝑙/𝑎)−2. In
these terms the dimensionless Hamiltonian becomes:

𝔥̂(𝑥̃) := 𝐻̂(𝑋̃)
ℏ𝜔

=
1
2

[
𝑝̂2 + (𝑥̂ − 𝑥̃)2 + 𝜂

2𝜋

(
𝑎

𝑙

)2
cos

(
2𝜋 𝑙
𝑎
𝑥̂

)]
. (3.5)

We note here that the system’s behavior is determined by the following
four dimensionless parameters:
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• the classical Prandtl-Tomlinson parameter 𝜂 = 4𝜋2𝑉0/(𝐾𝑎2) (introduced
in Eq. (??) above);

• the “quantumness" ratio ℏ𝜔/(𝐾𝑎2) = (𝑙/𝑎)2;

• 𝛽ℏ𝜔 that quantifies thermal occupation of the system’s excited levels;

• the dimensionless position of the slider 𝑥̃ = 𝑋̃/𝑙.

We wish to study the equilibrium properties of this model and use it to
establish a solid simulation procedure that can be extended to more computa-
tionally demanding many-body systems that cannot be directly diagonalized.

3.1 Exact diagonalization

The simplest approach to compute the equilibrium properties we are interested
in is to directly diagonalize the Hamiltonian Eq. (??). In the canonical ensem-
ble, having fixed the (dimensionless) position of the slider 𝑥̃, the partition
function of the Prandtl-Tomlinson system is:

𝑍(𝑥̃) = Tr exp
(
−𝛽𝐻̂(𝑥̃)

)
= Tr exp

(
−𝛽ℏ𝜔𝔥̂(𝑥̃)

)
=

=

∞∑
𝑖=0

e−𝛽ℏ𝜔𝑒𝑖 (𝑥̃) ,
(3.6)

where 𝑒𝑖(𝑥̃) is the 𝑖-th eigenvalue of 𝔥̂(𝑥̃). The exponential decrease of the
terms in the series in Eq. (??) suggests to approximate the partition function
by truncating the sum at index 𝐼 ∈ ℕ, provided that 𝑒𝐼(𝑥̃) − 𝑒0(𝑥̃) ≫ 𝑘B𝑇

ℏ𝜔 :

𝑍(𝑥̃) ≈
𝐼∑
𝑖=0

e−𝛽ℏ𝜔𝑒𝑖 (𝑥̃) , 𝐹(𝑥̃) = −1
𝛽

log(𝑍(𝑥̃)). (3.7)

We compute the eigenvalues by means of the shooting method, described
in Appendix ??, and report the resulting free energy surface in Figs. ?? and ??.

As shown in Figs. ?? and ??, there are two notable quantum mechanical
effects: first of all the lowering of free energy barriers, and secondly a smooth-
ing of the cusp at 𝑥̃ = 0. Furthermore, both higher temperatures and higher
“quantumness" regimes, measured by the ratio 𝑙2/𝑎2, tend to smooth out the
the first derivative of the free energy at 𝑥̃ = 0, but in general in the quantum
case no discontinuity occurs at 𝑇 = 0, see Fig. ??. As in the classical case, for
𝜂 < 1 no discontinuity occurs either.

Ground-state energy
We can understand the behavior of the ground state energy close to 𝑋̃ = 0 by
appealing to a simple model inspired by tight-binding (TB) methods applied
throughout chemistry and solid-state physics.
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Figure 3.1: Comparison between the
free energy of the classical model 𝐹(𝑋̃)
Eq. (??) (red, solid) and the free en-
ergy of the quantum system, Eq. (??).
Panel (a): 𝑘B𝑇 = 0.001 2𝑉0, Panel (b):
𝑘B𝑇 = 0.1 2𝑉0. Different curves cor-
respond to different regimes of quan-
tumness: 𝑙2/𝑎2 = 0.04 (black dashed
line), 𝑙2/𝑎2 = 0.11 (blue dot-dashed
line), 𝑙2/𝑎2 = 0.25 (black solid line). In
the quantum evaluations, we approxi-
mate 𝐹(𝑋̃) adopting the truncation of
Eq. (??), with 𝐼 = 30.
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Figure 3.2: Comparison between the
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model Eq. (??) (a), and the free en-
ergy of the quantum system Eq. (??)
with 𝐼 = 30 for 𝑙2/𝑎2 = 0.11 (b),
𝑙2/𝑎2 = 0.25 (c). Two temperatures
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𝑘B𝑇/(2𝑉0) = 10−3, and a very high
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Figure 3.6: Cartoon of the two energy levels
we consider for our "tight-binding" description
of the quantum PT model’s ground state.

As depicted in Fig. ??, for 𝜂 > 1 the low-energy portion of the potential
energy landscape resembles a double-well potential with two deep minima.
These low-lying minima satisfy the equation:

𝜕𝑉PT(𝑋, 𝑋̃)
𝜕𝑋

����
𝑋=𝑋L/R

= 0,

𝐾(𝑋 − 𝑋̃) − 2𝜋𝑉0
𝑎

sin
(
2𝜋
𝑎
𝑋

)
= 0.

(3.8)

Now we restrict to the basin-switching point 𝑋̃ = 0 and denote by the subscript
𝐿 or 𝑅 the quantities relative to the left and right well, respectively. Then the
two minima will be symmetric: 𝑋L = −𝑋R and will lie close to the minima
of the sinusoidal potential ±𝑎/2. Accordingly, to evaluate 𝑋R, in Eq. (??) we
expand sin(·) around 𝑎/2. We obtain:

𝐾𝑋R +
4𝜋2𝑉0
𝑎2

(
𝑋R −

𝑎

2

)
= 0 =⇒ 𝑋R =

𝜂

𝜂 + 1
𝑎

2 . (3.9)

If we assume that for 𝑋̃ sufficiently close to 0 the position and shape of the min-
ima remains constant, near the minima we can then approximate the potential
with two harmonic wells with spring constant 𝐾∗:

𝐾∗ =
𝜕2𝑉PT(𝑋, 𝑋̃ = 0)

𝜕𝑋2

����
𝑋=𝑋𝐿/𝑅

= 𝐾 − 4𝜋2𝑉0
𝑎2 cos

(
2𝜋
𝑎
𝑋𝐿/𝑅

)
=

= 𝐾

[
1 + 𝜂 cos

(
𝜋

2𝜂 + 1
𝜂 + 1

)]
= 𝐾 𝑤(𝜂) ,

where we introduce the spring-constant scaling factor

𝑤(𝜂) = 1 + 𝜂 cos
(
𝜋

2𝜂 + 1
𝜂 + 1

)
(3.10)

and the associated vibrational length

𝑙∗ =

√
ℏ√
𝑀𝐾∗

= 𝑙 𝑤(𝜂)−1/4 . (3.11)

We note in passing that 𝑤(𝜂) > 1 for 𝜂 > 1. This expansion around the two
minima allows us to construct a two-level system spanned by the ground states
of the two harmonic wells:

𝜓𝐿/𝑅(𝑋) =
exp

(
− (𝑋−𝑋𝐿/𝑅)

2

2𝑙∗

)
(𝜋𝑙2∗ )1/4

. (3.12)

The TB Hamiltonian matrix is:

HTB(𝑋̃) =
[
⟨𝐿|𝐻̂(𝑋̃)|𝐿⟩ ⟨𝐿|𝐻̂(𝑋̃)|𝑅⟩
⟨𝑅|𝐻̂(𝑋̃)|𝐿⟩ ⟨𝑅|𝐻̂(𝑋̃)|𝑅⟩

]
=

[
𝐻LL(𝑋̃) 𝐻LR(𝑋̃)
𝐻RL(𝑋̃) 𝐻RR(𝑋̃)

]
, (3.13)
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and the overlap matrix:

STB =

[
1 ⟨𝐿|𝑅⟩
⟨𝑅|𝐿⟩ 1

]
=

[
1 𝑆LR
𝑆RL 1

]
. (3.14)

We note that having defined both 𝜓𝐿 and 𝜓𝑅 as real functions guarantees
the symmetry of both the overlap and Hamiltonian matrices: 𝑆LR = 𝑆RL,
𝐻LR = 𝐻RL. The ground- and first-excited-state energies are obtained by
solving the 2 × 2 generalized eigenvalue problem:

HTB(𝑋̃)𝜓TB = 𝐸TBSTB𝜓TB , 𝜓TB ∈ ℝ2 . (3.15)

The ground-state eigenvalue is:

𝐸TB
0 (𝑋̃) =

𝐻LL + 𝐻RR − 2𝑆LR𝐻LR

2(1 − 𝑆2
LR)

− 1
2(1 − 𝑆2

LR)

√
(2𝑆LR𝐻LR − 𝐻LL − 𝐻RR)2 − 4(1 − 𝑆2

LR)(𝐻LL𝐻RR − 𝐻2
LR)

(3.16)

which we can rewrite as:

𝐸TB
0 (𝑋̃) =

𝐻LL + 𝐻RR

2(1 − 𝑆2
LR)
− 𝑆LR𝐻LR

(1 − 𝑆2
LR)

− 1
(1 − 𝑆2

LR)

√(
𝐻LL − 𝐻RR

2

)2

+ 𝐻2
LR − 2𝑆LR𝐻LR

(
𝐻LL + 𝐻RR

2

)
+ 𝑆2

LR𝐻LL𝐻RR.

(3.17)
After a fair amount of Gaussian integrals we obtain the following expressions
for the matrix elements and overlap integrals:

• The diagonal matrix elements read:

𝐻LL(𝑋̃) =
ℏ𝜔∗
4

{
1 + 𝑤(𝜂)−1

[
1 + 2

(
𝑋L − 𝑋̃
𝑙∗

)2]}
+𝑉0 exp

(
−𝜋

2𝑙2∗
𝑎2

)
cos

(
𝜋

𝜂

𝜂 + 1

)
𝐻RR(𝑋̃) =

ℏ𝜔∗
4

{
1 + 𝑤(𝜂)−1

[
1 + 2

(
𝑋R − 𝑋̃
𝑙∗

)2]}
+𝑉0 exp

(
−𝜋

2𝑙2∗
𝑎2

)
cos

(
𝜋

𝜂

𝜂 + 1

)
.

(3.18)

• The off-diagonal matrix elements are:

𝐻LR(𝑋̃) = 𝐻RL(𝑋̃) =

= exp

(
−
𝑋2

R

𝑙2∗

) {
ℏ𝜔∗
4

[
1 −

2𝑋2
R

𝑙2∗
+ 𝑤(𝜂)−1

(
1 + 2𝑋̃2

𝑙2∗

)]
+𝑉0 exp

(
−𝜋

2𝑙2∗
𝑎2

)
cos

(
𝜋

𝜂

𝜂 + 1

)}
.

(3.19)
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Figure 3.7: Comparison between the
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tight-binding model Eq. (??) and by
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the classical limit is not influenced by
the overlaps 𝑆LR.

It is apparent that these tunneling energies decay exponentially when
approaching the classical limit (𝑙/𝑎)2 → 0, or equivalently (𝑙∗/𝑎)2 → 0.

• The overlaps are:

𝑆RL = 𝑆LR = exp

[
−

(
𝑋L − 𝑋R

2𝑙∗

)2
]
= exp

[
−

(
𝑋R
𝑙∗

)2
]
. (3.20)

They also vanish exponentially in the classical limit (𝑙/𝑎)2 → 0.

As reported in Fig. ??, the TB energy of Eq. (??) approximates the ground-state
energy fairly well in a region around 𝑋̃ = 0.

As is clear from Fig. ??, the overlaps 𝑆LR play no role in the observed
exponential behavior of 𝜕2𝐸TB

0 (𝑋̃ = 0)/𝜕𝑋̃2, so we will neglect them. This
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approximation leads to a more tractable expression for the ground state energy:

𝐸TB
0 (𝑋̃) =

𝐻LL(𝑋̃) + 𝐻RR(𝑋̃)
2 −

√(
𝐻LL − 𝐻RR

2

)2

+ 𝐻2
LR. (3.21)

In order to extract information about the second derivative close to 𝑋̃ = 0 we
focus on the explicit dependence of each term on 𝑋̃:

𝐻LL + 𝐻RR
2 ∼ 𝐶1 + 𝐶2𝑋̃

2 (3.22)(
𝐻LL − 𝐻RR

2

)2

∼ 𝐶3𝑋̃
2 (3.23)

𝐻2
LR ∼ exp

(
−2
𝑋2

R

𝑙2∗

) (
𝐶4 + 𝐶5𝑋̃

2 + 𝒪(𝑋̃4)
)
. (3.24)

Here we gather most terms into constants 𝐶1 , 𝐶2 , 𝐶3 , 𝐶4 , 𝐶5 which do not
influence the resulting singular behavior in the classical limit. If we now
expand the square root in Eq. (??) we get:

𝐸TB
0 (𝑋̃) = 𝐶1 + 𝐶2𝑋̃

2 − exp

(
−
𝑋2

R

𝑙2∗

) √
|𝐶4|

√√√
1 + exp

(
2
𝑋2

R

𝑙2∗

)
𝐶3 + 𝐶5
𝐶4

𝑋̃2 + 𝒪(𝑋̃4) =

= 𝐶1 + 𝐶2𝑋̃
2 − exp

(
−
𝑋2

R

𝑙2∗

) √
|𝐶4|

[
1 + exp

(
2
𝑋2

R

𝑙2∗

)
𝐶3 + 𝐶5

2𝐶4
𝑋̃2 + o(𝑋̃2)

]
.Expanding
√

1 + 𝑧𝜀 𝜀→0∼ 1 + 𝑧2 𝜀

(3.25)
This way, we can attribute the exponential growth of the second derivative for
(𝑙/𝑎)2 → 0 to the exponential decrease of the tunneling matrix element 𝐻LR.
The full TB expression, valid for any quantumness is:

1
𝐾

𝜕2𝐸TB
0

𝜕𝑋̃2

����
𝑋̃=0,𝑆LR=0

= 1 − exp
(

𝜂2

4(𝜂 + 1)2
𝑎2

𝑙2∗

) 𝑎2

𝑙2

(
𝜂

𝜂+1

)2
+ exp

(
− 𝜂2

2(𝜂+1)2
𝑎2

𝑙2∗

)
𝑐

|𝑐| , (3.26)

where

𝑐 =

√
𝑤(𝜂)
4

(
1 −

2𝑋2
R

𝑙2∗
+ 𝑤−1

)
+ 𝜂

4𝜋2
𝑎2

𝑙2
exp

(
−𝜋2 𝑙

2
∗
𝑎2

)
cos

(
𝜋

𝜂

𝜂 + 1

)
. (3.27)

As shown in Fig. ??, the tight binding approach underestimates the tunneling
matrix element 𝐻LR and therefore overestimates 𝜕2𝐸0(𝑋̃ = 0)/𝜕𝑋̃2. Neverthe-
less, the exponential behavior is correctly reproduced albeit with a different
exponent, as is clear from Fig. ??b.

Comparison of Fig. ??a, Fig. ?? and Fig. ?? shows that both quantum and
finite-temperature effects yield a smoother (free-)energy profile, but the ap-
proach to the 𝑇 = 0 classical discontinuity in ℱ is radically different. Qualita-
tively this suggests, as expected, that both tunneling and thermal effects will
result in a preemption of stick-slip. Furthermore, we propose a quantitative
comparison of Fig. ?? with the classical finite-temperature results Fig. ?? as a
criterion to exclude stick-slip motion on the basis of the results of Sec. ??.
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both numerically calculating Eq. (??) (blue dot-dashed line), which includes the overlaps 𝑆LR, and with the
analytic result Eq. (??) (red dashed line) which neglects those overlaps. Panel (a): log-log plot as a function
of the "quantumness" 𝑙2/𝑎2. Panel (b): lin-log plot as a function of 𝑎2/𝑙2 which shows that the exponential
divergence in the classical limit is correctly captured by the TB model, except for an 𝜂-dependent constant in
the exponent.

3.2 Imaginary-time path integral

As is well known, given a desired numerical precision the memory and time
required to diagonalize a quantum Hamiltonian increases exponentially with
its number of degrees of freedom, so the method presented in the previous
section is impractical for many-body problems. A more computationally fa-
vorable and widely used approach to compute the equilibrium properties
of many-body systems consists of imaginary-time Path-Integral Monte Carlo
(PIMC) [?, ?] simulations. This method exploits the similarity between the par-
tition function of a quantum system in the path-integral formalism and that of
a specific classical system, whose properties can be studied by well-established
Markov-chain Monte-Carlo methods.

We develop here the tools necessary to understand PIMC, by applying it
specifically to the Prandtl-Tomlinson model described in the previous section.11The name “imaginary time" is due to

the analogy between the quantum time
evolution and the equilibrium Gibbs-
Boltzmann weights:

𝒰(𝑡 , 0) = exp
(
− 𝑖
ℏ
𝐻̂(𝑥̃)𝑡

)
𝑡=−𝑖𝛽ℏ
−−−−−→ exp

(
−𝛽𝐻̂(𝑥̃)

)
.

Given any operator 𝑂̂, its average at equilibrium is given by:

〈
𝑂̂

〉
𝑥̃
= Tr 𝜚(𝑥̃)𝑂̂, 𝜚(𝑥̃) = e−𝛽ℏ𝜔𝔥̂(𝑥̃)

𝑍(𝑥̃) . (3.28)

PIMC calculations aim at computing these averages. The crucial difficulty
here is the non-commutativity of the kinetic and potential energies, 𝑇̂ and 𝑉̂
defined in Eq. (??). Indeed, the exponential of the sum of two commuting
operators 𝐴1, 𝐴2 is just the product of the individual exponentials:

exp
(
𝐴̂1 + 𝐴̂2

)
= exp

(
𝐴̂1

)
exp

(
𝐴̂2

)
, if

[
𝐴̂1 , 𝐴̂2

]
= 0. (3.29)

In this case calculating averages, i.e. traces, is trivial: let |𝑎⟩ denote a basis of
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common eigenstates of 𝐴̂1 and 𝐴̂2:

𝐴̂1 |𝑎⟩ = 𝑎1 |𝑎⟩ , 𝐴̂2 |𝑎⟩ = 𝑎2 |𝑎⟩ (3.30)

then:
Tr

{
𝑂̂ exp

(
𝐴̂1 + 𝐴̂2

)}
=

∑
𝑎

⟨𝑎|𝑂̂ exp
(
𝐴̂1

)
exp

(
𝐴̂2

)
|𝑎⟩ =

=

∑
𝑎

⟨𝑎|𝑂̂|𝑎⟩ exp(𝑎1 + 𝑎2).
(3.31)

However, in the case of Eq. (??) in general
[
𝑇̂ , 𝑉̂

]
≠ 0 and, while the equi-

librium density matrix is still diagonal in the basis of eigenstates of 𝔥̂(𝑥̃), see
Eq. (??), these cannot be easily computed. PIMC estimates equilibrium av-
erages by approximating the matrix elements of 𝜚(𝑥̃) in the (non-diagonal) 𝑥
representation.

The first step toward PIMC is the Trotter splitting of operator exponentials:

exp
(
−𝛽𝐻̂(𝑥̃)

)
= lim
𝑃→∞

(
exp

(
− 𝛽
𝑃
𝑇̂

)
exp

(
− 𝛽
𝑃
𝑉̂(𝑥̂ , 𝑥̃)

))𝑃
. (3.32)

One way to understand why Eq. (??) is correct is to recall Baker-Campbell-
Hausdorff’s formula [?, ?]:

e𝑂̂e𝑂̂′ = exp
(
𝑂̂ + 𝑂̂′ + 1

2
[
𝑂̂, 𝑂̂′

]
+ 1

12
[
𝑂̂,

[
𝑂̂, 𝑂̂′

] ]
+ . . .

)
, (3.33)

with
𝑂̂ =

𝛽

𝑃
𝑇̂, 𝑂̂′ =

𝛽

𝑃
𝑉̂(𝑥̂ , 𝑥̃). (3.34)

We can then raise Eq. (??) to the power of 𝑃:(
e𝑂̂e𝑂̂′

)𝑃
= exp

[
𝑃

(
𝑂̂ + 𝑂̂′ + 1

2
[
𝑂̂, 𝑂̂′

]
+ 1

12
[
𝑂̂,

[
𝑂̂, 𝑂̂′

] ]
+ . . .

)]
, (3.35)

and note that all terms in the exponent except 𝑂̂ + 𝑂̂′ are 𝑜(𝑃−1). From the
expression of the next-to-leading term in Eq. (??):

exp
(
𝑃

2

[
𝛽

𝑃
𝑇̂,

𝛽

𝑃
𝑉(𝑥̂ , 𝑥̃)

] )
= exp

{
− 1

2𝑃

(
𝛽ℏ𝜔

2

)2 [
𝑝̂2 , (𝑥̂ − 𝑥̃)2 + 2𝑉0

ℏ𝜔
cos

(
2𝜋 𝑙
𝑎
𝑥̂

)]}
(3.36)

we note that the Trotterization (i.e. the splitting of the exponential) is effective
as long as:

1
2𝑃

(
𝛽ℏ𝜔

2

)2

≪ 1 ⇐⇒ 𝑃 ≫ 𝑃min =

⌈ (𝛽ℏ𝜔)2
8

⌉
. (3.37)

In particular, by rewriting:

𝛽ℏ𝜔 = 𝛽𝐾𝑎2 𝑙
2

𝑎2 (3.38)

we note that, for any fixed (inverse) temperature 𝛽 and spring constant 𝐾,
the effective number of Trotter slices needed to correctly capture the quantum
behaviour 𝑃min, Eq. (??), grows as 𝑙4/𝑎4.



3.2. Imaginary-time path integral 35

We can use Eq. (??) to evaluate the partition function, Eq. (??):

𝑍(𝑥̃) = Tr exp
(
−𝛽𝐻̂(𝑥̃)

)
=

∫
d𝑥 ⟨𝑥|exp

(
−𝛽𝐻̂(𝑥̃)

)
|𝑥⟩ =

= lim
𝑃→∞

∫
d𝑥 ⟨𝑥|

[
exp

(
− 𝛽
𝑃
𝑇̂

)
exp

(
− 𝛽
𝑃
𝑉̂(𝑥̂ , 𝑥̃)

)]𝑃
|𝑥⟩ .

(3.39)

We need to calculate the following off-diagonal matrix elements:

𝜚split(𝑦, 𝑤) =
〈
𝑦
��exp

(
− 𝛽
𝑃
𝑇̂

)
exp

(
− 𝛽
𝑃
𝑉̂(𝑥̂ , 𝑥̃)

)��𝑤〉
, (3.40)

because we can then rewrite Eq. (??) in terms of 𝜚split by explicitly writing the
split exponentials in terms of their (dimensionless) integral kernels:22Alternatively one can think of this as

inserting 𝑃 − 1 identities:∫
d𝑋𝑖 |𝑋𝑖⟩⟨𝑋𝑖 | = 𝟙,

between the split exponentials.
𝑍(𝑥̃) =

∫
d𝑥 ⟨𝑥|exp

(
−𝛽ℏ𝜔𝔥̂(𝑥̃)

)
|𝑥⟩ =

= lim
𝑃→∞

∫
d𝑥 ⟨𝑥|

[
exp

(
− 𝛽
𝑃

ℏ𝜔
2 𝑝̂2

)
exp

(
− 𝛽
𝑃
𝑉̂(𝑥̂ , 𝑥̃)

)]𝑃
|𝑥⟩ =

= lim
𝑃→∞

∫
d𝑥

∫ (
𝑃−1∏
𝑖=1

d𝑥𝑖

)
𝜚split(𝑥, 𝑥1)𝜚split(𝑥1 , 𝑥2) . . . 𝜚split(𝑥𝑃−1 , 𝑥).

(3.41)

The evaluation of 𝜚split(𝑦, 𝑤) goes as follows:

𝜚split(𝑦, 𝑤) =
〈
𝑦
��exp

(
𝛽ℏ𝜔

2𝑃 𝑝̂2
)

exp
(
𝛽

𝑃
𝑉̂(𝑥̂ , 𝑥̃)

)��𝑤〉
=

= exp
(
𝛽

𝑃
𝑉(𝑤, 𝑥̃)

) 〈
𝑦
��exp

(
−𝛽ℏ𝜔2𝑃 (𝑝̂)

2
)��𝑤〉

=

= exp
(
− 𝛽
𝑃
𝑉(𝑤, 𝑥̃)

) ∫ ∞

−∞

d𝑘′
2𝜋 exp

(
−𝛽ℏ𝜔2𝑃 𝑘′2

)
exp

(
𝑖𝑘′(𝑤 − 𝑦)

)
=

= exp
(
− 𝛽
𝑃
𝑉(𝑤, 𝑥̃)

) √
𝑃

2𝜋𝛽ℏ𝜔 exp
(
− 𝑃

2𝛽ℏ𝜔 (𝑤 − 𝑦)
2
)
,

(3.42)

where the last equality results from standard Gaussian integration:

∫ +∞

−∞
d𝑥 e−𝐴𝑥2+𝑥𝐵 =

√
𝜋
𝐴

e𝐵2/(4𝐴) . (3.43)



36 The Quantum PT Model

If we denote x = (𝑥1 , . . . , 𝑥𝑃) and 𝑥𝑃+1 = 𝑥1, we can rewrite Eq. (??):

𝑍(𝑥̃) = lim
𝑃→∞

(
𝑃

2𝜋𝛽ℏ𝜔

)𝑃/2 ∫
ℝ𝑃

𝑥𝑃+1=𝑥1

dx exp

©­­­­­­«
− 𝑃2

𝛽ℏ𝜔

𝐸𝐾(x)︷                   ︸︸                   ︷
1
𝑃

𝑃∑
𝑝=1

1
2 (𝑥𝑝+1 − 𝑥𝑝)2

ª®®®®®®¬
(3.44)

exp

©­­­­­­­­­­­­«
−𝛽ℏ𝜔2

1
𝑃

𝑃∑
𝑝=1



𝑉̃(𝑥𝑝 ;𝑥̃)︷                                ︸︸                                ︷(
𝑥𝑝 − 𝑥̃

)2 + 2𝑉0
ℏ𝜔

cos
(
2𝜋 𝑙
𝑎
𝑥𝑝

)︸                                            ︷︷                                            ︸
𝑈PT(x;𝑥̃)

ª®®®®®®®®®®®®¬
.

Before discussing the role of the newly-defined quantities 𝐸K and 𝑈PT, we

Figure 3.10: Cartoon of the classical polymer
whose partition function is described by the in-
tegral in Eq. (??), for 𝑃 = 5. The limit 𝑃 → ∞
yields the quantum partition function.

highlight the correspondence between 𝑍(𝑥̃), Eq. (??), and the 𝑃 → ∞ limit of
the partition function of a classical polymer of 𝑃 beads, see Fig. ??, such that:

• The first and last bead (indexes 𝑝 = 1 and 𝑝 = 𝑃 + 1) coincide;

• The 𝑝-th bead is connected by springs of stiffness

𝐾𝑃 =
𝑃

𝛽ℏ𝜔
, (3.45)

to the (𝑝 − 1)-th and (𝑝 + 1)-th (with periodic boundary conditions);

• Each bead experiences the classical PT potential 𝑉PT reduced by a factor
of 𝑃.

This point of view clarifies that we can calculate equilibrium averages of quan-
tum observables as the 𝑃 →∞ limit of equilibrium averages of corresponding
observables for the polymer we just described. In the following we will refer
to the intermediate variables 𝑥𝑝 as “Trotter slices" or “imaginary-time slices",
a term that clarifies their origin as different copies of the system at different
imaginary times (𝑝 − 1)𝛽/𝑃.

Alternatively, we can interpret the Trotterization procedure as a specific
algorithm to weight all of the possible periodic paths in imaginary time
𝜙 : [0, 𝛽] → ℝ, 𝜙(0) = 𝜙(𝛽). Indeed we can picture the position 𝑥𝑝 of

0

β/P

2β/P

3β/P

4β/P

β

x1

x2

x3

x4

x5

x6 = x0

ϕ1

ϕ2

Figure 3.11: Cartoon of the discretization of
two periodic paths 𝜙1 , 𝜙2, for 𝑃 = 5.

the 𝑝-pth bead in the polymer as the image of the point (𝑝 − 1)𝛽/𝑃 under 𝜙,
see Fig. ??. Calculating the 𝑃-dimensional integral in Eq. (??) corresponds to
averaging over all possible functions 𝜙 weighted depending on their values at
the discrete points (𝑝 − 1)𝛽/𝑃. In this analogy, the limit 𝑃 → ∞ is the contin-
uum limit for the discrete representation of the path 𝜙. This mental model of
the Trotterization procedure is the rationale for the name Path Integral Monte
Carlo.

In Eq. (??) we introduced a few important quantities: the total elastic
energy 𝐸𝐾 of the imaginary-time springs, the total potential energy 𝑈PT(x, 𝑥̃)
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and the potential energy contributions 𝑉̃(𝑥; 𝑥̃) of each Trotter slice. With this
formalism, we can compute the average value

〈
𝑂̂

〉
𝑥̃

of an operator function of
the position operator, 𝑂̂ = 𝑂(𝑥̂), according to Eqs. (??) and (??):

〈
𝑂̂

〉
𝑥̃
= Tr (𝜚(𝑥̃)𝑂(𝑥̂)) = Tr

©­­«
exp

(
−𝛽ℏ𝜔𝔥̂(𝑥̃)

)
𝑍(𝑥̃) 𝑂(𝑥̂)

ª®®¬ =

= lim
𝑃→∞

(
𝑃

2𝜋𝛽ℏ𝜔

)𝑃/2 ∫
ℝ𝑃

dx𝑂(𝑥1)
exp

[
− 𝑃2

𝛽ℏ𝜔𝐸𝐾(x) −
𝛽ℏ𝜔

2 𝑈PT(x, 𝑥̃)
]

𝑍(𝑥̃) .

(3.46)

More general operators or thermodynamic quantities of interest can be ap-
proximated in a similar manner, albeit requiring more involved calculations to
lead to an expression that can be cast in the form of Eq. (??).

Metropolis-Hastings algorithm

The computation of highly dimensional integrals, like Eq. (??), is most eas-
ily carried out using Markov Chain Monte Carlo methods, which rely on a
stochastic process to explore the integral’s domain, i.e. the polymer’s configu-
ration space. We focus here on the Metropolis-Hastings algorithm [?] (MHA)
which consists of a specific way to explore the configuration space by updating
the state of the system x = (𝑥1 , . . . , 𝑥𝑃) according to a transition rule:

𝒯 (x′← x), (3.47)

chosen so that the equilibrium distribution of the Markov process coincides
with the distribution we wish to sample. In the case of PIMC we will sample
the Boltzmann distribution of the classical polymer:

𝑃𝑃(x; 𝑥̃) =
(

𝑃

2𝜋𝛽ℏ𝜔

)𝑃/2 exp
[
− 𝑃2

𝛽ℏ𝜔𝐸𝐾(x) −
𝛽ℏ𝜔

2 𝑈PT(x, 𝑥̃)
]

𝑍(𝑥̃) . (3.48)

To guarantee the convergence to the desired probability distribution two prop-
erties are sufficient: ergodicity and a transition rule that satisfies the detailed
balance condition. The chain is said to be ergodic if any state of the system
may be reached in a finite number of transitions. This speaks of the ability of
the process to fairly explore the whole state space, a crucial property to ensure
correct sampling. If the chain is ergodic then choosing a transition rule that
satisfies the detailed balance condition:

𝑃𝑃(x; 𝑥̃)𝒯 (x′← x) = 𝑃𝑃(x′; 𝑥̃)𝒯 (x← x′), (3.49)

is sufficient to guarantee the match between the equilibrium distribution and
𝑃𝑃 .

In order to guarantee detailed balance, the MHA algorithm splits the tran-
sition in two steps:

𝒯 (x′← x) = 𝒫(x′← x)𝒜(x′← x), (3.50)
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where 𝒫(x′← x) is referred to as the proposal distribution and

𝒜(x′← x) = min
[
1, 𝒫(x← x′)𝑃𝑃(x′)
𝒫(x′← x)𝑃𝑃(x)

]
, (3.51)

is the acceptance probability. Practically speaking, one generates a new con-
figuration x′ by sampling from 𝒫(x′← x) and then accepts it with probability
𝒜(x′ ← x). The proposed configurations are usually referred to as "moves".
After a rejected move the system will remain in the same state until the next
accepted transition.

An integral like Eq. (??) can be estimated by first generating a Monte Carlo
sequence of 𝐽 configurations x𝑗 = (𝑥1𝑗 , . . . , 𝑥𝑃𝑗) with the MHA algorithm and
then averaging over these configurations:

〈
𝑂̂

〉
𝑥̃
≈ 𝑂̄ =

1
𝐽

𝐽∑
𝑗=1

𝑂(𝑥1𝑗) =
1
𝐽

𝐽∑
𝑗=1

𝑂 𝑗 =
〈
𝑂 𝑗

〉
. (3.52)

The standard error of the estimate 𝑂̄ is:

𝜎𝑂 =

√
𝜅𝑂𝜈𝑂
𝐽

, (3.53)

where
𝜈𝑂 =

〈
(𝑂 𝑗 − 𝑂̄)2

〉
(3.54)

is the variance of the time series 𝑂 𝑗 and

𝜅𝑂 = 1 + 2
∞∑
𝑘=1

〈
(𝑂𝑘 − 𝑂̄)(𝑂0 − 𝑂̄)

〉
𝜈𝑂

(3.55)

is the (integrated) correlation time. 𝜅𝑂 measures the average number of steps
necessary to decorrelate 𝑂 𝑗 , that is to say 𝐽/𝜅𝑂 is the effective number of
independent measurements of 𝑂. 𝜅𝑂 is strongly dependent on the measured
quantity, the proposed moves and the physical system. As is clear from Eq. (??),
the shorter the correlation time the more efficient the chain is. To ensure the
correct estimation of statistical errors we calculate 𝜅𝑂 using the algorithm
described in [?] and implement[?] data blocking [?].

Metadynamics
A well known difficulty of the MHA algorithm is that low-temperature sam-
pling of the distribution in Eq. (??) may fail to be ergodic if the barriers between
competing local minima are very high compared to thermal energy 𝛽−1. This
is a quite concrete possibility for the PT model at hand, which relies pre-
cisely on the crossing of energy barriers. Therefore, in order to work around
this problem, we implement[?] metadynamics [?], a method that proved itself
useful for enhancing the exploration of complex Free Energy Surfaces (FES)
of classical systems. Metadynamics enhances the probability of sampling
configurations with low Boltzmann weights by regularly modifying the free
energy of the system. First of all one selects a small set of collective variables
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(CVs) S = (𝑆1 , . . . , 𝑆𝑑), i.e. functions of the "microscopic" degrees of free-
dom of the system that describe important properties suitable to discriminate
between local free-energy minima, and then computes 𝐹(S) by performing a
non-Markovian random walk in configuration space.

For our quantum Prandtl-Tomlinson model we select the following two
CVs:

• 𝐸𝐾 : the average energy of the springs connecting particles in imaginary
time, see Eq. (??). This quantity is related to the quantum kinetic energy
by:

𝛽
〈
𝑇̂
〉
=
𝑃

2 − 𝑃
2 ⟨𝐸𝐾⟩ , (3.56)

and should allow the exploration of tunneling and delocalization effects
on the resulting free energy;

• 𝑥: the position of one of the particles in the chain, say 𝑥1. This CV
should be able to differentiate between local minima in the potential
energy, and acts as a useful variable to compare the free energy of the
classical system to the one computed through metadynamics, as will be
clear in the following.

We now rewrite the integrand of Eq. (??) as an explicit function of the CVs:

𝑍(𝑥̃) = lim
𝑃→∞

𝑃𝑃/2
∫
ℝ𝑃

dx
(2𝜋𝛽ℏ𝜔)𝑃/2

exp
(
− 𝑃2

𝛽ℏ𝜔
𝐸𝐾(x) −

𝛽ℏ𝜔

2 𝑈PT(x; 𝑥̃)
)
=

= lim
𝑃→∞

𝑃𝑃/2
∫
ℝ𝑃

dx
(2𝜋𝛽ℏ𝜔)𝑃/2

∫ ∞

−∞
d𝐸𝐾𝛿(𝐸𝐾 − 𝐸𝐾(x)) Insert a 𝛿(𝐸𝐾 − 𝐸𝐾(x)) and an integral over 𝐸𝐾

exp
(
− 𝑃2

𝛽ℏ𝜔
𝐸𝐾 −

𝛽ℏ𝜔

2 𝑈PT(x; 𝑥̃)
)
=

= lim
𝑃→∞

∫
ℝ

d𝐸𝐾
∫
ℝ

d𝑥𝑔𝑃(𝑥, 𝐸𝐾) exp
(
− 𝑃2

𝛽ℏ𝜔
𝐸𝐾 −

𝛽ℏ𝜔

2
1
𝑃
𝑉̃(𝑥; 𝑥̃)

)
Isolate one of the 𝑥𝑝 variables and call
𝑔𝑃 (𝑥, 𝐸𝐾) all of the remaining terms that refer
to the other Trotter slices(3.57)

where

𝑔𝑃(𝑥, 𝐸𝐾) =
𝑃𝑃/2√
2𝜋𝛽ℏ𝜔

∫
ℝ𝑃−1

©­«
𝑃∏
𝑝=2

d𝑥𝑝√
2𝜋𝛽ℏ𝜔

ª®¬ 𝛿(𝐸𝐾 − 𝐸𝐾(𝑥, 𝑥2 , . . . , 𝑥𝑝))

exp ©­«−
𝛽ℏ𝜔

2
1
𝑃

𝑃∑
𝑝=2

𝑉̃(𝑥𝑝 ; 𝑥̃)ª®¬ ,
(3.58)

is the density of states of the polymer at given total (dimensionless) elastic
energy 𝐸𝐾(x) = 𝐸𝐾 and position of one of the particles 𝑋1 = 𝑙𝑥1 = 𝑙𝑥 = 𝑋.
We can therefore rewrite the partition function, Eq. (??), as the integration of
a reduced partition function 𝑍𝑃(𝑥, 𝐸𝐾 ; 𝑥̃):

𝑍(𝑥̃) = lim
𝑃→∞

∫
d𝐸𝐾d𝑥𝑍𝑃(𝑥, 𝐸𝐾 ; 𝑥̃),

= lim
𝑃→∞

∫
ℝ

d𝐸𝐾
∫
ℝ

d𝑥 exp
(
−𝛽𝐹𝑃(𝑥, 𝐸𝐾 ; 𝑥̃)

) (3.59)
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given by

𝑍𝑃(𝑥, 𝐸𝐾 ; 𝑥̃) = 𝑔𝑃(𝑥, 𝐸𝐾 ; 𝑥̃) exp
(
− 𝑃2

𝛽ℏ𝜔
𝐸𝐾 −

𝛽ℏ𝜔

𝑃
𝑉̃(𝑥; 𝑥̃)

)
. (3.60)

As usual we can define the associated free energy:

𝐹𝑃(𝑥, 𝐸𝐾 ; 𝑥̃) = −1
𝛽

log(𝑍𝑃(𝑥, 𝐸𝐾 ; 𝑥̃)).

Metadynamics can be used to calculate 𝐹𝑃(𝑥, 𝐸𝐾 ; 𝑥̃) by adding a simulation-
time-dependent repulsive bias potential 𝑉meta(S, 𝑡MC) to the energy and per-
forming a Metropolis walk in configuration space. The repulsive potential has
the goal of pushing the system away from metastable minima by gradually
increasing the free energy of frequently visited regions of CV space. This is
achieved by adding to 𝑉meta a repulsive kernel localized close to the instanta-
neous value of the CVs, S(𝑡MC), every 𝜏𝐺 timesteps during the simulation:

𝑉meta(S, 𝑡MC) =
∑

𝑛∈ℕ:𝑛𝜏𝐺<𝑡MC

𝑤 exp

(
−

𝑑∑
𝑖=1

(𝑆𝑖 − 𝑆𝑖(𝑛𝜏𝐺))2
2𝜎2

𝑖

)
. (3.61)

The established practice for metadynamics is to take a Gaussian centered
around S(𝑡MC) as repulsive kernel. The height 𝑤 of the Gaussian influences
the “filling speed", and the variances 𝜎2

𝑖
influence the resolution of the re-

constructed FES. This bias will force the system away from frequently visited
configurations, which correspond to low-free-energy states, effectively filling
the FES and approximating it up to a constant:

lim
𝑡MC→∞

𝑉meta(S, 𝑡MC) ≈ −𝐹(S) + 𝐶. (3.62)

In fact, metadynamics suffers from convergence problems that encouraged
its refinement. We therefore implement[?] Well-Tempered Metadynamics [?]:
during the simulation the bias potential height 𝑤 is changed according to the
following procedure:

𝑤(𝑡MC) = 𝑤 exp
(
−𝑉wtm(S(𝑡MC), 𝑛𝜏𝐺)

𝑘BΔ𝑇

)
, 𝑛 =

⌊
𝑡MC
𝜏𝐺

⌋
. (3.63)

The size of the Gaussians decreases in the most visited regions of CV space,
guaranteeing convergence of the method [?]. The new parameter Δ𝑇 can
be interpreted as the maximum height of any free-energy barrier the well-
tempered metadynamics simulation will be able to overcome effectively. In
this scheme, similarly to Eq. (??), the bias potential is computed as:

𝑉wtm(S, 𝑡MC) =
∑

𝑛∈ℕ:𝑛𝜏𝐺<𝑡MC

𝑤(𝑡MC) exp

(
−

∑
𝑖

(𝑆𝑖 − 𝑆𝑖(𝑛𝜏𝐺))2
2𝜎2

𝑖

)
. (3.64)

The decrease in the height of Gaussians reduces the fluctuations plaguing
metadynamics and ensures the long-time convergence to the FES:

𝛽𝐹(S) = lim
𝑡MC→∞

− 𝛾wtm

𝑘BΔ𝑇
𝑉wtm(S, 𝑡MC) + 𝐶, (3.65)



3.2. Imaginary-time path integral 41

-5

 0

 5

 10

 15

 20
(a)

l2 / a2 = 0.04
η = 12

PT potential

kB T / (2 V0) = 0.03

kB T / (2 V0) = 0.06

kB T / (2 V0) = 0.12

F
(X

;0
)/

(ℏ
ω

)

(b)
PT potential

kB T / (2 V0) = 0.03

Metadynamics kB T / (2 V0) = 0.03

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-1 -0.5  0  0.5  1

(c)
|Ψ0(X;0)|2

kB T / (2 V0) = 0.03

kB T / (2 V0) = 0.06

kB T / (2 V0) = 0.12

P
(X

;0
)

X/a

-0.5  0  0.5

(d)
Metadynamics kB T / (2 V0) = 0.03

P
(X

;0
)

X/a

Figure 3.12: (a) Comparison between the classical PT potential 𝑉PT(𝑥; 𝑥̃ = 0) and the constrained free energy
𝐹(𝑥; 𝑥̃ = 0) = −𝛽−1 log(𝑍(𝑥; 𝑥̃ = 0)), where 𝑙2/𝑎2 = 0.04 and 𝑍(𝑥; 𝑥̃ = 0) was obtained by Eq. (??) with
𝐼 = 30. Horizontal lines represent the first few energy levels. Note that the three lowest levels are all nearly
twofold degenerate. (b) Comparison between 𝐹(𝑥, 𝑥̃ = 0) and the results of metadynamics. (c) Comparison
between 𝑃(𝑋; 𝑋̃ = 0) (Eq. (??)), 𝐼 = 30, and the ground state probability density |Ψ0(𝑥; 𝑥̃ = 0)|2 . Panel
(d): Comparison between 𝑃(𝑋; 𝑋̃ = 0) and the constrained partition function resulting from metadynamics
(normalized). Parameters for the metadynamics simulation are the following: 𝑃 = 10, total number of Gaussians
𝑁tot = 300000, 𝑤 = 0.01ℏ𝜔, 𝜏𝐺 = 20000, Δ𝑇 = 8ℏ𝜔/𝑘B, 𝜎𝑥 = 0.05, 𝜎𝐸𝐾 = 0.02

where
𝛾wtm =

𝑇 + Δ𝑇
𝑇

is the so-called bias factor. Furthermore, it is possible to obtain an asymptoti-
cally time-independent estimator of the free-energy [?] that can be used both
to compare metadynamics simulations with different parameters and estimate
the degree of convergence of any given free-energy basin:

𝐹(S, 𝑡MC) = −
𝛾wtm

𝑘BΔ𝑇
𝑉wtm(S, 𝑡MC) +

1
𝛽

log
∫

dS′ exp
(
𝑇 + Δ𝑇
Δ𝑇

𝛽𝑉wtm(S′, 𝑡MC)
)
.

(3.66)
The idea behind metadynamics is that of "filling free-energy basins with

gaussians", this intuitive mechanism can be given a rigorous definition if we
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Figure 3.13: Panel (a): Compari-
son between the classical PT poten-
tial 𝑉PT(𝑥; 𝑥̃) and the constrained free
energy 𝐹𝑃 (𝑥; 𝑥̃) = −1/𝛽 log(𝑍𝑃 (𝑥; 𝑥̃)),
where 𝑙2/𝑎2 = 1 and 𝑍𝑃 (𝑥; 𝑥̃)was ob-
tained by Eq. (??) with 𝐼 = 30. Hori-
zontal lines represent the first few en-
ergy levels. Panel (b): Comparison be-
tween 𝑃(𝑋; 𝑋̃) (Eq. (??)), 𝐼 = 30, and
the ground state probability density
|Ψ0(𝑥; 𝑥̃)|2 .

think of it as a procedure to transition between two probability distributions:

𝑃0(S) =
exp

(
−𝛽𝐹(S)

)
𝑍

→ 𝑃meta(S); (3.67)

in other words "filling the free-energy basins" implies that when the metady-
namics procedure is completed we expect the FES to be flat, and therefore the
probability distribution 𝑃meta(S) to be uniform [?]. The well-tempered vari-
ant of metadynamics can be given a similar interpretation as a procedure to
transition from the Boltzmann distribution to a smoother one, call it 𝑃wtm(S),
such that free-energy barriers are lowered by a factor of 𝛾 = (𝑇 + Δ𝑇)/𝑇. For
concreteness, from now on let us focus on the well-tempered scheme. During
the simulation the probability distribution will not be exactly 𝑃wtm(S), but we
know that:

lim
𝑡MC→∞

𝑃wtm(S, 𝑡MC) = 𝑃wtm(S), (3.68)

If we can estimate 𝑃wtm(S, 𝑡MC), given an operator 𝑂̂ we can also calculate
its average value by collecting statistics of the trajectory explored during the
well-tempered metadynamics simulation [?]. Indeed:〈

𝑂̂
〉
=

∫
dx𝑂(x)𝑃0(x) =

∫
dx𝑂(x)𝑃wtm(S(x), 𝑡MC)

𝑃0(x)
𝑃wtm(S(x), 𝑡MC)

=

∫
d𝑋𝑂(x)𝑤(x, 𝑡MC)𝑃wtm(S(x), 𝑡MC) =

〈
𝑂̂𝑤(x, 𝑡MC)

〉
wtm ,

(3.69)

where

𝑤(x, 𝑡MC) =
𝑃0(S(x))

𝑃wtm(S(x), 𝑡MC)
. (3.70)

Given a way to compute these weights we can compute average values of
any observable as weighted averages over the biased MC trajectory {x𝑗}𝐽𝑗=1 =
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{(𝑥1𝑗 , . . . , 𝑥𝑃𝑗)}𝐽𝑗=1 , with the same notation as Eq. (??):

〈
𝑂̂

〉
≈

∑𝐽

𝑗=1 𝑂(𝑋′1𝑗)𝑤(𝑋′1𝑗 , 𝑗)∑𝐽

𝑗=1 𝑤(𝑋′1𝑗 , 𝑗))
. (3.71)

This procedure is called "reweighting". Many ways to estimate 𝑤(x, 𝑡MC) have
been proposed over the years [?, ?, ?, ?], we implement[?] the one proposed by
Tiwary and Parrinello [?]:

𝑤(x, 𝑡MC) =
exp

(
𝛽𝑉wtm(S(x), 𝑡MC)

)〈
exp

(
𝛽𝑉wtm(S(x), 𝑡MC)

)〉
wtm

, (3.72)

so that average values of observables are reweighted according to the following
scheme: 〈

𝑂̂
〉
=

〈
𝑂̂ exp

(
𝛽𝑉wtm(S(x), 𝑡MC) − 𝑐(𝑡MC)

)〉
wtm , (3.73)

where

𝑐(𝑡MC) =
1
𝛽

log

∫
dS′ exp

(
−𝛽𝐹(S′)

)∫
dS′ exp

(
−𝛽(𝐹(S′) +𝑉wtm(S′, 𝑡MC))

) . (3.74)

and we substitute 𝐹(S)with its well-tempered estimate Eq. (??):

𝑐(𝑡MC) =
1
𝛽

log

∫
dS′ exp

(
𝛾wtm
𝑘BΔ𝑇

𝑉wtm(S′, 𝑡MC)
)

∫
dS′ exp

(
𝑉wtm(S′ ,𝑡MC)

𝑘BΔ𝑇

) . (3.75)

Having computed 𝐹𝑃(𝑥, 𝐸𝐾 ; 𝑥̃) one can compare the result to the classical
FES by logarithmically integrating out 𝐾:

𝐹𝑃(𝑥; 𝑥̃) = −1
𝛽

log
{∫

d𝐸𝐾 exp
(
−𝛽𝐹𝑃(𝑥, 𝐸𝐾 ; 𝑥̃)

)} 𝑃→∞−−−−→ 𝐹(𝑥; 𝑥̃) (3.76)

In the high-temperature limit the Trotter splitting is exact and therefore the
quantum FES should approximate the classical PT potential (Eq. (??)):

𝐹(𝑋; 𝑋̃) = 𝐹(𝑙𝑥; 𝑙 𝑥̃) 𝑇→∞−−−−→ 𝑉PT(𝑋; 𝑋̃). (3.77)

On the other hand, in the low-temperature limit the probability density should
converge to the ground state probability density |Ψ0(𝑋; 𝑋̃)|2:

𝑃(𝑋; 𝑋̃) = 𝑍(𝑋; 𝑋̃)∫
ℝ

d𝑥𝑍(𝑥; 𝑥̃)
=

𝑍(𝑙𝑥; 𝑙 𝑥̃)∫
ℝ

d𝑥𝑍(𝑥; 𝑙 𝑥̃)
𝑇→0−−−→ |Ψ0(𝑋; 𝑋̃)|2. (3.78)

In general one can compare the probability density associated to the calcu-
lated FES to the probability density given by the thermal mixing of the first 𝐼
eigenstates:

𝑃(𝑥; 𝑥̃) = 𝑍(𝑥; 𝑥̃)∫
ℝ

d𝑥𝑍(𝑥; 𝑥̃)
≈

∑𝐼
𝑖=0 e−𝛽𝐸𝑖 (𝑥̃)|Ψ𝑖(𝑥; 𝑥̃)|2∑𝐼
𝑖=0 exp

(
−𝛽𝐸𝑖(𝑥̃)

) , (3.79)
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where Ψ𝑖(𝑥; 𝑥̃) is the i-th eigenstate of the Hamiltonian at fixed 𝑥̃, see Fig. ??.
Provided that 𝐼 is chosen so that 𝐸𝐼(𝑥̃) − 𝐸0(𝑥̃) ≫ 𝑘B𝑇. We can then compare
the results of metadynamics with the probability density obtained by explicit
diagonalization, see Fig. ??(b)-(d). In accordance with the previous section,
quantum-mechanical effects reduce the effective barriers and, in the strongly
quantum mechanical regime, even remove them completely.

Having introduced PIMC and metadynamics, we will now show how they
can be used to compute the quantity of interest:

−𝜒 =
𝜕2𝐹(𝑋̃)
𝜕𝑋̃2

����
𝑋̃=0

. (3.80)

By definition 𝑍(𝑥̃) = −1/𝛽 log 𝐹(𝑥̃), which implies:

𝜕𝐹(𝑥̃)
𝜕𝑥̃

= −1
𝛽

1
𝑍(𝑥̃)

𝜕𝑍(𝑥̃)
𝜕𝑥̃

. (3.81)

Substituting the definition of 𝑍(𝑥̃), Eq. (??), we obtain:

𝜕 log𝑍(𝑥̃)
𝜕𝑥̃

= lim
𝑃→∞

∫
dx𝑃𝑃(x; 𝑥̃)𝛽ℏ𝜔

𝑃

𝑃∑
𝑝=1
(𝑥𝑝 − 𝑥̃). (3.82)

This quantity is sufficient to compute the second derivative:

𝜕2𝐹(𝑥̃)
𝜕𝑥̃2 = lim

𝑃→∞
1
𝛽



∫

dx𝑃𝑃(x; 𝑥̃)𝛽ℏ𝜔
𝑃

𝑃∑
𝑝=1
(𝑥̃ − 𝑥𝑝)


2

−

∫
dx𝑃𝑃(x; 𝑥̃)


(𝛽ℏ𝜔)2
𝑃2

𝑃∑
𝑝,𝑝′=1
(𝑥𝑝 − 𝑥̃)(𝑥̃ − 𝑥𝑝′) − 𝛽ℏ𝜔




(3.83)

Unfortunately, due to time constraints, we were not able to test the Path Integral
Monte Carlo method to compute this quantity.



Chapter 4

Conclusions and outlook

In this thesis we propose a novel semi-quantitative method to infer kinetic
frictional properties for the classical and quantum Prandtl-Tomlinson model
based on equilibrium averages. We focus on the free energy 𝐹 for both the
classical and the quantum PT model, and observe that the stick-slip regime
requires a sharp cusp-like shape of this thermodynamical quantity as the PT
slider traverses a maximum point of the periodic potential, see Fig. ??. This
sharp cusp signals a rapid sign switch of the force acting on the PT slider,
when crossing to the next attraction basin. Accordingly, we evaluate the
second derivative

−𝜒 =
𝜕2𝐹(𝑋̃)
𝜕𝑋̃2

����
𝑋̃=0

, (4.1)

which has to be negative and large for stick-slip dynamics to be expected
at least in a suitable driving velocity range. We use classical dynamical
simulations to estimate the value 𝜒𝑐 where a crossover from stick-slip to
smooth/thermolubric dynamics occurs, see Figs. ??, ??. In other terms, for
𝜒 = |𝜕2𝐹(𝑋̃ = 0)/𝜕𝑋̃2| < 𝜒𝑐 , smooth/thermolubric sliding is expected to occur
at any speed.

While thermal effects are quantified by the ratio between the temperature
and the barrier height 𝑘B𝑇/(2𝑉0), we gauge quantum effects by the squared
ratio between the oscillator length and the periodicity of the substrate potential
(𝑙/𝑎)2 = ℏ𝜔/(𝐾𝑎2). The effects of quantum mechanics and temperature are
both to decrease 𝜒, but in quite different ways: The approach to the classical
deterministic 𝑇 = 0 limit is 𝜒 ∝ 𝛽 ∝ 𝑇−1 in the classical model, see Eq. (??)
and Fig. ??, while it is exponential in (𝑎/𝑙)2 for the quantum ground state
as "quantumness" decreases, see Fig. (??). We predict that thermal/quantum
effects will decrease 𝜒 below 𝜒𝑐 , thus getting rid of the stick-slip dynamics for
sufficiently high temperature and/or sufficiently strong "quantumness".

Future research directions include:

• Perfecting the classical analysis described in Sec. ??, investigating the
precise quantitative link between 𝜒𝑐 and the corresponding temperature;

• Correcting the estimates of the derivative of the ground-state energy

𝜕2𝐸0(𝑋̃)
𝜕𝑋̃2

����
𝑋̃=0

, (4.2)
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by employing, e.g., the WKB approximation;

• Estimating friction [?] taking not just thermal but also quantum effects
into consideration, e.g. by evaluating tunneling rates through the WKB
method [?];

• Thoroughly testing the PIMC approach described in Sec. ?? and applying
it to an extended PT model that accounts explicitly for the phononic exci-
tations, both in the classical and quantum regimes. Appendix ?? reports
preliminary calculations for the PT model coupled to an harmonic chain.



Appendix A

Partition function for the classical PT model

In this appendix we calculate a useful approximation for the partition function
of the classical PT model, introduced in ??:

𝑍(𝑋̃) =
∫
ℝ2

d𝑋d𝑃
2𝜋ℏ e−𝛽

(
𝑃2
2𝑀 +𝑉PT(𝑋,𝑋̃)

)
=

∫
ℝ

d𝑋
Λ

e−𝛽𝑉PT(𝑋,𝑋̃) =

=
𝑎

Λ

∫
ℝ

d𝑥 exp
[
−𝛽𝐾𝑎2 𝑥

2

2 − 𝛽𝑉0 cos(2𝜋(𝑥 + 𝑥̃))
]
,

(A.1)

in the last step we carried out the substitution 𝑥 = (𝑋 − 𝑋̃)/𝑎 and introduced
the thermal length Λ defined in Eq. (??) and the dimensionless slider position
𝑥̃ = 𝑋̃/𝑎. Calculating the partition function Eq. ?? reduces to the following
integral:

𝑍(𝑥̃) = 𝑎

Λ

∫
ℝ

d𝑥 exp
(
− 𝑥

2

2𝜎2

)
e−𝑏 cos(2𝜋(𝑥+𝑥̃)) , (A.2)

with

𝜎2 = 1/(𝛽𝐾𝑎2), 𝑏 = 𝛽𝑉0 .

We can simplify the problem by restricting our attention to the low temperature
regime 𝑇 → 0, 𝛽𝑉0 = 𝑏 → ∞, where we expect the second derivative of the
free energy to diverge, see ??. In order to extract the asymptotic behavior of
Eq. (??) we can expand the second exponential in Fourier series:

e−𝑏 cos(2𝜋(𝑥+𝑥̃)) = e𝑏 cos(2𝜋(𝑥+𝑥̃)+𝜋) =
+∞∑
𝑛=−∞

𝐼𝑛(𝑏)e𝑖𝑛2𝜋(𝑥+𝑥̃)e𝑖𝑛𝜋 , (A.3)

where the Fourier components 𝐼𝑛(𝑏) are the modified Bessel functions of the
first kind:

𝐼𝑛(𝑏) =
∫ 𝜋

−𝜋

d𝜃
2𝜋 e−𝑖𝑛𝜃 exp(𝑏 cos𝜃). (A.4)
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Substituting the series expansion and exchanging the series and the integral
we obtain:

𝑍(𝑥̃) = 𝑎

Λ

∑
𝑛∈ℤ

𝐼𝑛(𝑏)
∫
ℝ

d𝑥 exp
(
− 𝑥

2

2𝜎2

)
e𝑖𝑛𝜋e𝑖2𝜋𝑛(𝑥+𝑥̃) =

=
𝑎

Λ

∑
𝑛∈ℤ
(−1)𝑛 𝐼𝑛(𝑏)e𝑖2𝜋𝑛𝑥̃

∫
ℝ

d𝑥 exp
(
− 𝑥

2

2𝜎2 + 𝑖2𝜋𝑛𝑥
)
= Complete the square and compute the

Gaussian integral

=
𝑎

Λ

∑
𝑛∈ℤ

√
2𝜋𝜎2(−1)𝑛 𝐼𝑛(𝑏)e−2𝜋2𝑛2𝜎2e𝑖2𝜋𝑛𝑥̃ = By exchanging 𝜃→ −𝜃 in Eq.(??), it is

straightforward to show that 𝐼𝑛 (𝑏) = 𝐼−𝑛 (𝑏).

=
𝑎

Λ

√
2𝜋𝜎2

(
𝐼0(𝑏) + 2

+∞∑
𝑛=1
(−1)𝑛 𝐼𝑛(𝑏) cos(2𝜋𝑛𝑥̃)e−2𝜋2𝑛2𝜎2

)
.

(A.5)

Going back to the definition of the modified Bessel functions 𝐼𝑛(𝑏), Eq. (??),
we notice that for 𝑏 →∞ the integral is dominated by the regions close to the
maxima of cos𝜃. We now (i) expand cos𝜃 ≈ 1 − 𝜃2/2 in the small-|𝜃| region
(thereby renouncing the periodicity in 𝜃, and therefore in 𝑥̃), and (ii) extend
the integration to the entire real line, as appropriate for large 𝑏 (i.e. large 𝛽𝑉0):

𝐼𝑛(𝑏)
(i)≃

∫ +𝜋

−𝜋

d𝜃
2𝜋 e−𝑖𝑛𝜃e𝑏(1−𝜃2/2)

(ii)≃ e𝑏
∫ +∞

−∞

d𝜃
2𝜋 exp

(
−𝑏𝜃

2

2 − 𝑖𝑛𝜃
)
=

=
e𝑏√
2𝜋𝑏

exp
(
−𝑛

2

2𝑏

)
.

(A.6)

Substituting back

𝜎2 =
1

𝛽𝐾𝑎2 =
1
𝑏

𝜂

4𝜋2 , 𝑏 = 𝛽𝑉0 ,

and the asymptotic expression for 𝐼𝑛(𝑏) for 𝑏 →∞, Eq. (??) reads:

𝑍(𝑥̃) = 𝑎

Λ

∫
ℝ

d𝑥 exp
(
−𝛽𝐾𝑎2 𝑥

2

2 − 𝛽𝑉0 cos(2𝜋(𝑥 + 𝑥̃))
)
=

𝛽𝑉0→∞≃ √𝜂 e𝛽𝑉0

2𝜋𝛽𝑉0

[
1 + 2

+∞∑
𝑛=1
(−1)𝑛 exp

(
− 𝑛2

2𝛽𝑉0
(𝜂 + 1)

)
cos(2𝜋𝑛𝑥̃)

]
=

=
√
𝜂

e𝛽𝑉0

2𝜋𝛽𝑉0
𝜃4

(
𝑥̃; exp

(
−𝜂 + 1

2𝛽𝑉0

))
,

(A.7)

where we recognized the term in square brackets as the Jacobi theta function
of the fourth kind [?]:11The notation one finds in the lit-

erature for 𝜃4 is fairly standardized, al-
though disputable. Other than the defi-
nition in Eq. (??), one also finds the fol-
lowing definition of 𝜃4:

𝜃4(𝑧, 𝑞) = 𝜃4
(
𝑧

𝜋
; 𝑞

)
,

which differs by a factor of 𝜋 and the
use of a comma (‘,’) rather than a semi-
colon (‘;’). In order to avoid confusion, we
chose to adopt the definition that mostly
resembles the series we obtain for 𝑍(𝑥̃),
nevertheless care must be taken in order
to keep track of the correct factors of 𝜋
when comparing with the literature. To
further reduce the possibility of confu-
sion, we adopt the customary names for
the variables 𝑧, 𝑞 and 𝜏.

𝜃4(𝑧; 𝑞) = 1 + 2
∞∑
𝑛=1
(−1)𝑛𝑞𝑛2 cos(2𝜋𝑛𝑧). (A.8)

In the literature 𝑞 is called the nome and often expressed as:

𝑞 = e𝑖𝜋𝜏. (A.9)
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In order to obtain an asymptotic expansion for 𝜃4(𝑧; 𝑞) as 𝑞 → 1−, or alterna-
tively 𝜃𝜏

4 (𝑧; 𝜏) := 𝜃4(𝑧; e𝑖𝜋𝜏) for 𝜏→ 𝑖0+, we can exploit the symmetries of the
Jacobi theta function under the modular transformation 𝜏→ −1/𝜏:

𝜃𝜏
4 (𝑧; 𝜏) =

exp
(
− 𝑖𝜋𝑧2

𝜏

)
√
−𝑖𝜏

𝜃𝜏
2

(
𝑧

𝜏
;−1

𝜏

)
, (A.10)

where

𝜃𝜏
2 (𝑧; 𝜏) =

+∞∑
𝑛=−∞

e𝑖𝜋𝜏(𝑛+1/2)2e𝑖(2𝑛+1)𝜋𝑧 . (A.11)

The modular transformation 𝜏 → −1/𝜏 maps the behaviour of 𝜃4 for 𝑞 → 1−
to the behaviour of 𝜃2 for 𝑞 → 0 where the series converges quickly and can be
accurately approximated by the leading terms. Indeed, by using Eq. (??) and
Eq. (??) we can write:

𝜃𝜏
4 (𝑧; 𝜏) =

exp
(
− 𝑖𝜋𝑧2

𝜏

)
√
−𝑖𝜏

𝜃𝜏
2

(
𝑧

𝜏
;−1

𝜏

)
=

=

exp
(
− 𝑖𝜋𝑧2

𝜏

)
√
−𝑖𝜏

+∞∑
𝑛=−∞

exp
(
− 𝑖𝜋

𝜏
(𝑛 + 1/2)2

)
exp

(
𝑖(2𝑛 + 1)𝜋𝑧

𝜏

)
=

𝜏→𝑖0+≃
exp

(
− 𝑖𝜋𝑧2

𝜏

)
√
−𝑖𝜏

exp
( 𝜋
4𝑖𝜏

) [
e
𝑖𝜋𝑧
𝜏 + e−

𝑖𝜋𝑧
𝜏

]
. The two leading terms in the limit 𝜏→ 𝑖0+

correspond to 𝑛 = 0 and 𝑛 = −1.

(A.12)

We can then rewrite this in terms of 𝑞 via Eq. (??):

𝜃4(𝑧; 𝑞) = 2
√

𝜋

log
(
1/𝑞

) exp
(
𝜋2𝑧2

log 𝑞

)
exp

(
𝜋2

4 log 𝑞

)
cosh

(
𝜋2𝑧

log 𝑞

)
, (A.13)

With this asymptotic expansion and the identification

𝑧 = 𝑥̃ , 𝑞 = exp
(
−𝜂 + 1

2𝛽𝑉0

)
, (A.14)

the partition function reads:

𝑍(𝑥̃)
𝛽𝑉0→∞≃ 2 𝑎

Λ

√
𝜂

𝜂 + 1
e𝛽𝑉0√
2𝜋𝛽𝑉0

exp
(
−2𝜋2𝛽𝑉0

𝜂 + 1 (𝑥̃
2 + 1/4)

)
cosh

(
2𝜋2𝛽𝑉0 𝑥̃

𝜂 + 1

)
. (A.15)

As show in Fig. ?? the asymptotic result of Eq. (??) agrees fairly well with
the free energy surface obtained by numerical integration[?] of Eq. (??) for
temperatures as high as 10−1𝑉0/𝑘B.
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Figure A.1: Comparison between the
free energy surface obtained by nu-
merical integration of Eq. (??) (dashed
lines), by the asymptotic expansion
Eq. (??) (dot-dashed line) and by sum-
ming the series in Eq. (??) (solid lines),
for 𝜂 = 12 and (a) 𝑘B𝑇/(2𝑉0) = 0.1,
(b) 𝑘B𝑇/(2𝑉0) = 0.01. As expected,
the agreement improves in the 𝑇 → 0
limit.



Appendix B

Validating the metadynamics procedure

Before applying the procedure described in Section ??, we validate it by testing
it on simple or analytically solvable quantum systems. The focus of this section
is calculating free energy surfaces, i.e. equilibrium distributions for quantum
observables of interest. Given a 1D system with Hamiltonian 𝐻̂, its equilibrium
state is:

𝜌 =
e−𝛽𝐻̂
𝑍

. (B.1)

Given an observable 𝐴(𝑥̂), we can calculate its average value:

⟨𝐴⟩ = Tr
{
𝜌𝐴̂

}
=

∫
ℝ

d𝑥𝜌(𝑥, 𝑥)𝐴(𝑥), (B.2)

furthermore by inserting an identity
∫

d𝐴𝛿(𝐴 − 𝐴(𝑥)) and exchanging the
order of integration we obtain:

⟨𝐴(𝑥̂)⟩ =
∫
ℝ

d𝐴e−𝛽𝐹(𝐴)𝐴, 𝐹(𝐴) := −1
𝛽

log
(∫

ℝ

d𝑥𝛿(𝐴 − 𝐴(𝑥))𝜌(𝑥, 𝑥)
)
. (B.3)

Metadynamics and Path-Integral Monte Carlo can be used to calculate both
the average value ⟨𝐴(𝑥̂)⟩ and the equilibrium distribution 𝐹(𝐴).

B.1 The quantum harmonic oscillator

By far the most studied quantum system is the 1 dimensional quantum har-
monic oscillator (QHO), governed by the Hamiltonian:

𝐻̂QHO = ℏ𝜔

(
1
2 𝑝̂

2 + 1
2 𝑥̂

2
)
. (B.4)

The density matrix of the quantum harmonic oscillator can be calculated ana-
lytically:

𝜌QHO(𝑥, 𝑥) = e−𝛽𝐹(𝑥) , 𝐹(𝑥)
ℏ𝜔

=
𝑇

𝑇vib
tanh

(
𝑇vib
2𝑇

)
𝑥2 , (B.5)

where𝑇vib = ℏ𝜔/𝑘B. This analytic result is compared to the harmonic potential
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Figure B.1: Panel (a): Free energy
for the QHO, Eq. (??), compared to the
potential ℏ𝜔/2 𝑥2. Panel (b): Com-
parison between the free energy calcu-
lated as in Section ?? (cyan, solid), the
quantum free energy Eq. (??) (black,
dashes) and the potential (red, dashes
and dots). Parameters for the metady-
namics simulation: 𝑁gaus = 100000,
ℎ = 0.01ℏ𝜔, 𝜎𝑋 = 0.3, 𝜎𝐾 = 0.05, sim-
ulation box [−5, 5], 𝑁delay = 10000,
𝑃 = 10 (𝑃min = 1), 𝑇 = 0.4𝑇vib,
Δ𝑇 = 3.

in Fig. ??a. The QHO does not present any of the features that make metady-
namics useful: there are no energy barriers to overcome, nor competing local
minima to explore, but its simplicity and the availability of an analytic solution
for 𝐹 make it a sensible test system. As shown in Fig. ??b, the metadynamics
calculation reliably reproduces the expected FES.

B.2 The double well

A more interesting quantum system that exhibits the features we would like
to benchmark in metadynamics calculations is the double well (DW), a system
governed by Hamiltonian:

𝐻̂DW =
ℏ

2𝑀 𝑝̂2 + 𝐵
(
𝑥̂4 − 2𝑥̂2 + 1

)
. (B.6)

The potential, depicted in Fig. ??, is characterized by two minima at 𝑥 = −1
and 𝑥 = 1 separated by a barrier of height 𝐵. When the barrier is of the order
of unity we expect tunneling between the two minima and therefore slight
decrease in the effective barrier height, this is indeed the case for 𝑇 = 0.4 (in
natural units) as the metadynamics calculations show in Fig. ??. The thermal
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Figure B.2: The potential energy for
the DW.𝑈(𝑥) = 𝐵(𝑥4 − 2𝑥2 + 1).

In the following we rescale our units so that ℏ = 𝑀 = 1:

𝐻̂DW =
1
2 𝑝̂

2 + 𝐵
(
𝑥̂4 − 2𝑥̂2 + 1

)
. (B.7)
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Figure B.3: Panel (a): Compari-
son between the quantum FES (black,
solid line) and the DW potential (red,
dashes). Horizontal lines mark the
first 2 energy levels of the system, both
their proximity and their position be-
low the barrier mark the presence of
tunneling. Parameters for the metady-
namics simulation: 𝑁gaus = 150000,
ℎ = 0.01, 𝜎𝑋 = 0.3, 𝜎𝐾 = 0.05,
𝑁delay = 20000, 𝑇 = 0.4, 𝑃 = 100,
Δ𝑇 = 3. Panel (b): Ground state
probability density |Ψ0(𝑥)|2 for 𝐵 = 5,
the broad region corresponding to the
barrier where |Ψ0(𝑥)|2 ≠ 0 is a stark
marker of the presence of tunneling.
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Figure B.4: Comparison of the prob-
ability density obtained by metady-
namics Eq. (??) (black, solid line) with
the approximate probability density
𝜌𝑀DW(𝑥) for 𝐼 = 5 (blue, dots and
dashes). Parameters for metadynam-
ics are as in Fig. ??. As shown in Fig. ??,
metadynamics is very sensitive to the
addition of Gaussians near the free en-
ergy minima, so that the maximum er-
ror will coincide with the peaks in the
probability distribution.

Gibbs state for this quantum system is:

ˆ𝜌DW =
1
𝑍

exp
(
− 𝐻̂DW

𝑇

)
=

∑
𝑛 e−𝐸𝑛/𝑇 |Ψ𝑛⟩⟨Ψ𝑛|∑

𝑛 e−𝐸𝑛/𝑇
, (B.8)

where Ψ𝑛 and 𝐸𝑛 are eigenvectors and eigenvalues of 𝐻̂DW, solutions to the
stationary Schödinger equation:

𝐻̂DWΨ𝑛 = 𝐸𝑛Ψ𝑛 . (B.9)

We can compare the probability density associated to the FES, i.e.

𝑃(𝑥) =
exp

(
− 𝐹(𝑥)𝑇

)
∫

d𝑥 exp
(
− 𝐹(𝑥)𝑇

) , (B.10)

to the diagonal part of the integral kernel 𝜌DW(𝑥, 𝑦):

𝜌DW(𝑥) =
1
𝑍
⟨𝑥|𝜌DW|𝑥⟩ =

1
𝑍

∑
𝑛

e−𝐸𝑛/𝑇 |Ψ𝑛(𝑥)|2. (B.11)

In practice we can solve the 1-dimensional Schrödinger equation numerically
for the first 𝑁 eigenvalues and eigenvectors and then approximate Eq. (??) by:

𝜌𝑁DW(𝑥) =
∑𝑁
𝑛 e−𝐸𝑛/𝑇 |Ψ𝑛(𝑥)|2∑𝑁

𝑛 e−𝐸𝑛/𝑇
, (B.12)

the result of this comparison is shown in Fig. ??.



Appendix C

The shooting method

Consider a 1D Schrödinger differential operator:

𝐻̂ = −1
2

d2

d𝑥2 +𝑉(𝑥) (C.1)

and its associated eigenvalue problem:[
−1

2
d2

d𝑥2 +𝑉(𝑥)
]
𝜓𝑖(𝑥) = 𝐸𝑖𝜓𝑖(𝑥). (C.2)

Implicit in the statement of the eigenvalue equation is that𝜓𝑖(𝑥) ∈ 𝐿2(ℝ)which
implies:

𝜓𝑖(𝑥)
|𝑥|→∞−−−−−→ 0. (C.3)

The shooting method [?, ?] is an iterative algorithm to compute both 𝐸𝑖 and
𝜓𝑖(𝑥) by solving an initial value problem associated to the eigenvalue equa-
tion. The algorithm is based on the following well-known properties of the
eigenvalues 𝐸𝑖 and eigenstates 𝜓𝑖(𝑥):

• Eigenvalues are ordered: ∀𝑗 , 𝑖 ∈ ℕ : 𝑖 < 𝑗 =⇒ 𝐸𝑖 ≤ 𝐸 𝑗 , this is not really
a property, but rather a useful naming convention,

• Eigenstates are exponentially localized, i.e. 𝜓𝑖(𝑥) 𝑥→±∞∼ exp
(
∓𝛽±𝑥

)
for

𝛽± > 0,

• The index 𝑖 ∈ ℕ of the eigenstate 𝜓𝑖(𝑥) corresponds to the number of
nodes of 𝜓𝑖(𝑥).

These three facts are sufficient to state the core of the shooting method to solve
Eq. ?? for a given eigenvalue and eigenstate pair (𝐸𝑖 ,𝜓𝑖(𝑥)):

1. Select an interval 𝐼 = [𝑎, 𝑏] ⊂ ℝ sufficiently large so that 𝜓𝑖(𝑎) ≈ 0
and 𝜓𝑖(𝑏) ≈ 0 (this is guaranteed to exist by virtue of the exponential
localization of the eigenstates) and define:

𝐸𝑚 = min
𝑥∈𝐼

𝑉(𝑥), 𝐸𝑀 = max
𝑥∈𝐼

𝑉(𝑥), 𝐸 =
𝐸𝑚 + 𝐸𝑀

2 , (C.4)

It is important to note that the interval [𝐸𝑚 , 𝐸𝑀] must contain 𝐸𝑖 for the
algorithm to work,
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2. Solve the initial value problem:{
𝜓(𝑎) = 0[
− 1

2
d2

d𝑥2 +𝑉(𝑥)
]
𝜓(𝑥) = 𝐸𝜓(𝑥), (C.5)

by discretizing the interval 𝐼 and integrating the differential equation
with e.g. the Numerov algorithm.

3. Count the number of nodes 𝑁 of 𝑓 , if 𝑁 > 𝑖 than the trial eigenvalue 𝐸
is too high, otherwise it is too low. Bisect the interval [𝐸𝑚 , 𝐸𝑀] until the
trial eigenvalue remains constant within the desired numerical accuracy.
The estimate eigenvalue and eigenvector are 𝐸 and 𝜓(𝑥), respectively.

The method presented here is almost complete, but it neglects a crucial prop-
erty of the possible solutions of the initial value problem in the region where
𝑉(𝑥) > 𝐸. Restricting for a moment to the simpler case of constant potential,
in this region the Schrödinger equation reads:

1
2

d2

d𝑥2𝜓𝑖(𝑥) = 𝑘2
𝑖 𝜓𝑖(𝑥), 𝑘2

𝑖 = 𝐸 −𝑉 > 0, (C.6)

which implies 𝜓𝑖(𝑥) ≈ exp(±𝑘𝑖𝑥). Only one of these two solutions can be rec-

onciled with the boundary conditions 𝜓𝑖(𝑥)
|𝑥|→∞−−−−−→ 0, so we need to explicitly

avoid the appearance of the non-normalizable solution in the integration of
the differential equation. In order to avoid the exponential growth of the wave
function, we integrate left-to-right from 𝑎 to 𝑥𝑐 , the “classical inversion point",
𝑥𝑐 ∈ 𝐼 : 𝑉(𝑥𝑐) = 𝐸, and we then proceed to integrate the equation backwards
from 𝑏 towards 𝑥𝑐 . We then match the value and the first derivative of the
obtained function at 𝑥𝑐 . Again counting the number of nodes and bisecting the
interval until 𝐸 stays constant within the desired accuracy yields the desired
eigenvalue 𝐸𝑖 = 𝐸 and the, now always normalizable, eigenstate 𝜓𝑖(𝑥) = 𝜓(𝑥).



Appendix D

Prandtl-Tomlinson particle coupled to phonons

As a natural extension to the PT model considered in Chaps. ?? and ??, we
consider a quantum model composed of a harmonic chain of 𝑁 particles
interacting with a single particle (“the slider”), in a harmonic trap centered at
position 𝑋̃. We denote operators referring to the slider with capital letters 𝑋̂
and 𝑃̂, and operators referring to the 𝑛-th particle in the chain with lower-case
letters 𝑥̂𝑛 and 𝑝̂𝑛 . If we denote by𝑉(𝑋−𝑥𝑛) a general interaction term between
the slider and one of the particles in the chain, we can write Hamiltonian of
the model as:

𝐻̂(𝑋̃) = 𝑃̂2

2𝑀 +
𝐾

2 (𝑋̂ − 𝑋̃)
2 +

𝑁∑
𝑛=1

[
𝑝̂2
𝑛

2𝑚 +
𝑚𝜔2

2 (𝑥̂𝑛+1 − 𝑥̂𝑛 − 𝑎)2
]
+ 𝑉̂int (D.1)

where:

𝑉̂int =

𝑁∑
𝑛=1

𝑉(𝑋̂ − 𝑥̂𝑛) (D.2)

is the interaction potential between the slider and each bead in the harmonic
chain, 𝑉 being a sufficiently fast decaying function.

Assuming that chain displacements are small compared to the lattice spac-
ing, and setting 𝑥̂𝑛 = 𝑛𝑎 + 𝑢̂𝑛 , we can linearize the interaction:

𝑉̂int =

𝑁∑
𝑛=1

𝑉(𝑋̂ − 𝑛𝑎 − 𝑢̂𝑛) =
𝑁∑
𝑛=1

(
𝑉(𝑋̂ − 𝑛𝑎) − 𝑢̂𝑛𝑉 ′(𝑋̂ − 𝑛𝑎) + · · ·

)
≈ 𝑉per(𝑋̂) −

𝑁∑
𝑛=1

𝑢̂𝑛𝑉
′(𝑋̂ − 𝑛𝑎) ,

(D.3)

where

𝑉per(𝑋̂) =
𝑁∑
𝑛=1

𝑉(𝑋̂ − 𝑛𝑎) (D.4)

is a periodic static potential experienced by the slider. Upon linearizing the

57



58 Prandtl-Tomlinson particle coupled to phonons

interaction, the Hamiltonian can be rewritten as follows:

𝐻̂(𝑋̃) = 𝑃̂2

2𝑀+
𝐾

2 (𝑋̂ − 𝑋̃)
2 +𝑉per(𝑋̂)︸                     ︷︷                     ︸

𝑉PT(𝑋̂;𝑋̃)

+
𝑁∑
𝑛=1

[
𝑝̂2
𝑛

2𝑚 +
𝑚𝜔2

2 (𝑢̂𝑛+1 − 𝑢̂𝑛)2
]
−

𝑁∑
𝑛=1

𝑢̂𝑛𝑉
′(𝑋̂−𝑛𝑎) .

(D.5)
The partition function is:

𝑍(𝑋̃) = Tr e−𝛽𝐻̂(𝑋̃) =
∫ ∞

−∞
d𝑋

∫ 𝑁∏
𝑛=1

d𝑢𝑛 ⟨𝑋, 𝑢1 , · · · 𝑢𝑁 |e−𝛽𝐻̂(𝑋̃)|𝑋, 𝑢1 , · · · 𝑢𝑁⟩

≡
∫ ∞

−∞

d𝑋
𝜆

e−𝛽𝐹(𝑋;𝑋̃) ,

where 𝐹(𝑋; 𝑋̃) is the constrained free-energy for the slider, and 𝜆 an appropri-
ate length, e.g., the thermal wavelength Λ.

D.1 Integration of phonon variables

We now write the full partition function for the linearized Hamiltonian, us-
ing the imaginary-time path integral formalism, see Sec. ?? for an introduc-
tion. Our notation involves the various Trotter slice replicas. As before,
X = (𝑋1 , · · · , 𝑋𝑃). We also denote as u𝑛 = (𝑢𝑛,1 , · · · , 𝑢𝑛,𝑃), and, collectively, u
to be the 𝑁 × 𝑃 matrix with elements 𝑢𝑛,𝑝 . We can write:

𝑍(𝑋̃) = lim
𝑃→∞

∫
dX
𝜆𝑃
𝑇,𝑠

∫
du
𝜆𝑁𝑃
𝑇,𝑐

e−𝒜(X,u;𝑋̃) , (D.6)

where:

𝒜(X, u; 𝑋̃) =𝒜𝑠(X; 𝑋̃) + 𝒜𝑐(u) + 𝒜𝑠𝑐(X, u) + 𝒜0

𝒜𝑠(X; 𝑋̃) = 1
2

2𝜋𝑃
𝜆2
𝑇,𝑠

𝑃∑
𝑝=1
(𝑋𝑝+1 − 𝑋𝑝)2 +

𝛽

𝑃

𝑃∑
𝑝=1

𝑉PT(𝑋𝑝 ; 𝑋̃)

𝒜𝑐(u) =
1
2

2𝜋𝑃
𝜆2
𝑇,𝑐

𝑁∑
𝑛=1

𝑃∑
𝑝=1
(𝑢𝑛,𝑝+1 − 𝑢𝑛,𝑝)2 +

𝛽

𝑃

𝑚𝜔2

2

𝑁∑
𝑛=1

𝑃∑
𝑝=1
(𝑢𝑛+1,𝑝 − 𝑢𝑛,𝑝)2

𝒜𝑠𝑐(X, u) = −
𝛽

𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

𝑢𝑛,𝑝𝑉
′(𝑋𝑝 − 𝑛𝑎)

𝒜0 = −(𝑁 + 1)𝑃
2 log𝑃 . (D.7)

The terms 𝒜𝑐 and 𝒜𝑠𝑐 of the action contain the phonon coordinates
quadratically and linearly, respectively. 𝒜𝑐 clearly shows a translational in-
variance on the “two-dimensional” coordinate grid (𝑛, 𝑝) that suggests the use
of lattice Fourier transforms. More precisely, if (𝑛, 𝑝) denotes the direct lattice
coordinates, we introduce reciprocal lattice wave-vectors q = (𝑞1 , 𝑞2) and the
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Fourier transform:

𝑢q =
1√
𝑁𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

𝑢𝑛,𝑝 e−𝑖(𝑞1𝑛+𝑞2𝑝) (D.8)

with inverse given by:

𝑢𝑛,𝑝 =
1√
𝑁𝑃

BZ∑
q
𝑢q e𝑖(𝑞1𝑛+𝑞2𝑝) . (D.9)

Notice that 𝑢∗q = 𝑢−q since the 𝑢𝑛,𝑝 are real. The 𝑁𝑃 wave-vectors q in the
Brillouin Zone (BZ) are given by:

𝑞1 =
2𝜋𝑙1
𝑁

, 𝑞2 =
2𝜋𝑙2
𝑁

with 𝑙1 = −𝑁2 +1, · · · , 𝑁2 ; 𝑙2 = −𝑃2+1, · · · , 𝑃2 .
(D.10)

Next, by introducing the anisotropic spring constants (both with physical
dimension of 1/length2):

𝐾1 =
𝛽

𝑃
𝑚𝜔2 , 𝐾2 =

2𝜋𝑃
𝜆2
𝑇,𝑐

, (D.11)

we can rewrite the quadratic part (second line) of the action as:

𝒜𝑐(u) =
1
2

𝑁∑
𝑛=1

𝑃∑
𝑝=1

(
𝐾1(𝑢𝑛+1,𝑝 − 𝑢𝑛,𝑝)2 + 𝐾2(𝑢𝑛,𝑝+1 − 𝑢𝑛,𝑝)2

)
=

1
2

BZ∑
q

Dq|𝑢q|2 , (D.12)

where we introduced the Fourier transform of the dynamical matrix

Dq = 2𝐾1(1 − cos 𝑞1) + 2𝐾2(1 − cos 𝑞2) ≥ 0 . (D.13)

We now re-write the linear coupling term𝒜𝑠𝑐 in Fourier transform:

𝒜𝑠𝑐 = −
𝛽

𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

𝑢𝑛,𝑝𝑉
′(𝑋𝑝 − 𝑛𝑎) = −

𝛽

𝑃

1√
𝑁𝑃

BZ∑
q
𝑢q

𝑁∑
𝑛=1

𝑃∑
𝑝=1

e𝑖(𝑞1𝑛+𝑞2𝑝)𝑉 ′(𝑋𝑝 − 𝑛𝑎)

= −
BZ∑
q
𝑢q𝐽
∗
q , (D.14)

where we have defined:

𝐽q =
𝛽

𝑃

1√
𝑁𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

e−𝑖(𝑞1𝑛+𝑞2𝑝)𝑉 ′(𝑋𝑝 − 𝑛𝑎) . (D.15)

The goal is now to perform the Gaussian integral involving the phonon vari-
ables u. Technically, full translational invariance in the Hamiltonian is broken
by the position of the spring 𝑋̃. To prevent the slider to drag the whole chain
along, we eliminate the uniform translation mode which gives a divergent con-
tribution to the integral in Eq. (??). Notice also that the 𝑁𝑃 complex variables
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𝑞1

𝑞2

𝜋

−𝜋

𝜋−𝜋

𝐵𝑍+

𝑁

𝑃
Figure D.1: A sketch of the Brillouin
zone of the polymer.

𝑢q are not independent, since 𝑢−q = 𝑢∗q. Hence, we can concentrate on half of
the BZ, where for every q we do not include the corresponding −q: we denote
this set of q vectors by BZ+, see Fig. ?? for a depiction of this region of the
Brillouin zone. The relevant integral is transformed as follows:∫

ℝ(𝑁−1)𝑃/2\uniform

d(𝑁−1)𝑃/2u
𝜆(𝑁−1)𝑃/2
𝑇,𝑐

e−𝒜𝑐 (u)−𝒜𝑠𝑐 (X,u) (D.16)

−→ 1
𝜆(𝑁−1)𝑃/2
𝑇,𝑐

BZ+∏
q≠0

∫ [
d𝑢qd𝑢∗q

]
e−Dq|𝑢q|2+(𝑢q𝐽∗q+𝑢∗q𝐽q)

=
1

𝜆(𝑁−1)𝑃/2
𝑇,𝑐

BZ+∏
q≠0

𝜋
Dq

e|𝐽q|
2/Dq . (D.17)

Observe the peculiar definition of the complex integral, where if 𝑧 = 𝑥 + 𝑖𝑦:∫
[d𝑧d𝑧∗] 𝑓 (𝑧) ≡

∫
d𝑥d𝑦 𝑓 (𝑥 + 𝑖𝑦) . (D.18)

The final expression in Eq. (??) then follows from the standard real Gaussian
integral: ∫

d𝑥 e−𝐴𝑥2+𝑥𝐵 =

√
𝜋
𝐴

e𝐵2/(4𝐴) .

Notice that the vectors q ∈ BZ+ \0 are exactly (𝑁 −1)𝑃/2 in number, hence the
normalization in Eq. (??) is correct, since 1/Dq has a dimension of length2.

The substitution of the integrated phonon contribution Eq. (??) into Eq. (??)
leads to an expression suitable for the calculation of equilibrium averages using
the PIMC method, as described in Sec. ??.


